Effect of Mechanical Pretreatments on Damage Mechanisms and Fracture Toughness in CFRP/Epoxy Joints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrates and Adhesive Materials
2.2. Surface Preparation
2.3. Analysis of Surface Morphology and Topography
2.4. Surface Energy and Wetting Envelops
2.5. Fabrication of Adhesive Joints and Determination of Fracture Toughness
3. Results and Discussion
3.1. Surface Morphology and Topography
3.2. Surface Energy and Wettability
3.3. Double Cantilever Beam Tests
3.4. Discussion
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Interlaminar Fracture Toughness of the CFRP Laminates
Appendix B. Data Reduction Scheme for the Determination of Mode I Fracture Toughness
References
- Canada’s Climate Plan (MoU). 2019. Available online: https://www.canada.ca/en/services/environment/weather/climatechange/climate-plan.html (accessed on 12 September 2020).
- Weber, A. Carbon-fiber composites grow in popularity. Assembly 2019, 62, 1–9. [Google Scholar]
- Heuss, R.; Muller, N.; van Sintern, W.; Starke, A.; Tschiesner, A. Advanced Industries—Lightweight, Heavy Impact. How Carbon Fiber and Other Lightweight Materials Will Develop Across Industries and Specifically in Automotive; McKinsey&Company: New York, NY, USA, 2012. [Google Scholar]
- Lightweight Materials in Transportation Market: Key Players, Growth, Analysis, 2019–2025. Scientect 2020. Available online: https://scientect.com/uncategorized/767197/lightweight-materials-in-transportation-market-key-players-growth-analysis-2019-2025/ (accessed on 20 November 2020).
- Russell, J.D. Composites Affordability Initiative. In Proceedings of the 41st Structures, Structural Dynamics, and Materials Conference and Exhibit, Atlanta, GA, USA, 3–6 April 2000. [Google Scholar]
- Adhesive Bonding. Science, Technology and Applications; CRC Press LLC: Boca Raton, FL, USA, 2005.
- Ribeiro, T.E.A.; Campilho, R.D.S.G.; da Silva, L.F.M.; Goglio, L. Damage analysis of composite–aluminium adhesively-bonded single-lap joints. Compos. Struct. 2016, 136, 25–33. [Google Scholar] [CrossRef]
- Budhe, S.; Banea, M.D.; de Barros, S.; da Silva, L.F.M. Damage analysis of composite–aluminium adhesively-bonded single-lap joints. Int. J. Adhes. Adhes. 2017, 72, 30–42. [Google Scholar] [CrossRef]
- Shang, X.; Marques, E.A.S.; Machado, J.J.M.; Carbas, R.J.C.; Jiang, D.; da Silva, L.F.M. Review on techniques to improve the strength of adhesive joints with composite adherends. Compos. Part B 2019, 177, 107363. [Google Scholar] [CrossRef]
- Holtmannspötter, J.; Czarnecki, J.V.; Wetzel, M.; Dolderer, D.; Eisenschink, C. The use of peel ply as a method to create reproduceable but contaminated surfaces for structural adhesive bonding of carbon fiber reinforced plastics. J. Adhes. 2013, 89, 96–110. [Google Scholar] [CrossRef]
- Wetzel, M.; Holtmannspötter, J.; Gudladt, H.J.; Czarnecki, J.V. Sensitivity of double cantilever beam test to surface contamination and surface pretreatment. Int. J. Adhes. Adhes. 2013, 46, 114–121. [Google Scholar] [CrossRef]
- Markatos, D.N.; Tserpes, K.I.; Rau, E.; Markus, S.; Ehrhart, B.; Pantelakis, S. The effects of manufacturing-induced and in-service related bonding quality reduction on the mode-I fracture toughness of composite bonded joints for aeronautical use. Compos. Part B Eng. 2013, 45, 556–564. [Google Scholar] [CrossRef]
- Takeda, T.; Yasuoka, T.; Hoshi, H.; Sugimoto, S.; Iwahori, Y. Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites. Compos. Part A Appl. Sci. Manuf. 2019, 119, 30–37. [Google Scholar] [CrossRef]
- Holtmannspötter, J. How surfaces of carbon fiber reinforced plastics with thermoset matrices need to be treated for structural adhesive bonding. J. Adhes. 2020, 96, 839–854. [Google Scholar] [CrossRef]
- Rauh, B.; Kreling, S.; Kolb, M.; Geistbeck, M.; Boujenfa, S.; Suess, M.; Dilger, K. UV-laser cleaning and surface characterization of an aerospace carbon fiber reinforced polymer. Int. J. Adhes. Adhes. 2018, 82, 50–59. [Google Scholar] [CrossRef]
- Blass, D.; Nyga, S.; Jungbluth, B.; Hoffmann, H.D.; Dilger, K. Composite bonding pre-treatment with laser radiation of 3 μm Wavelength: Comparison with conventional laser sources. Materials 2018, 11, 1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, R.; Alfano, M.; Lubineau, G. Laser-based surface patterning of composite plates for improved secondary adhesive bonding. Compos. Part A Appl. Sci. Manuf. 2018, 109, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Alfano, M.; Lubineau, G. In situ analysis of interfacial damage in adhesively bonded composite joints subjected to various surface pretreatments. Compos. Part A Appl. Sci. Manuf. 2019, 116, 216–223. [Google Scholar] [CrossRef]
- De Freese, J.; Holtmannspötter, J.; Raschendorfer, S.; Hofmann, T. End milling of Carbon Fiber Reinforced Plastics as surface pretreatment for adhesive bonding–effect of intralaminar damages and particle residues. J. Adhes. 2020, 96, 1122–1140. [Google Scholar] [CrossRef]
- Naya, F.; Pappas, G.; Botsis, J. Micromechanical study on the origin of fiber bridging under interlaminar and intralaminar mode I failure. Compos. Struct. 2019, 210, 877–891. [Google Scholar] [CrossRef]
- Canal, L.P.; Alfano, M.; Botsis, J. A multi-scale based cohesive zone model for the analysis of thickness scaling effect in fiber bridging. Compos. Sci. Technol. 2017, 139, 90–98. [Google Scholar] [CrossRef]
- Mulle, M.; Lubineau, G.; Al Yousef, J. Mechanical Characterization of Composite Material and Strain Gage Instrumentation. KAUST Gifted Student Program. 2018. Available online: http://hdl.handle.net/10754/629577 (accessed on 10 March 2021).
- Tao, R.; Li, X.; Yudhanto, A.; Alfano, M.; Lubineau, G. On controlling interfacial heterogeneity to trigger bridging in secondary bonded composite joints: An efficient strategy to introduce crack-arrest features. Compos. Sci. Technol. 2020, 188, 107964. [Google Scholar] [CrossRef]
- Huntsman, Araldite 420 A/B Structural Adhesives-Technical Datasheet 2012. Available online: https://samaro.fr/pdf/FT/Araldite_FT_420_AB_EN.pdf (accessed on 13 March 2021).
- Uni EN ISO 4287:2009. Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. ISO Int. Stand. 2009.
- Blackman, B.R.K.; Kinloch, A. Fracture Tests for Structural Adhesive Joints. In Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites, 6th ed.; Moore, D.R., Pavan, A., Williams, J.G., Eds.; European Structural Integrity Society, Polymers, Adhesives and Composites TC4 Committee: Brussels, Belgium, 2001. [Google Scholar]
- Tao, R.; Li, X.; Yudhanto, A.; Alfano, M.; Lubineau, G. Laser-based interfacial patterning enables toughening of CFRP/epoxy joints through bridging of adhesive ligaments. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106094. [Google Scholar] [CrossRef]
- Zimmermann, N.; Wang, P.H. A review of failure modes and fracture analysis of aircraft composite materials. Eng. Fail. Anal. 2020, 115, 104692. [Google Scholar] [CrossRef]
- ASTM D5528-13. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. Available online: https://www.astm.org/Standards/D5528 (accessed on 13 March 2021).
- Tao, R.; Alfano, M.; Lubineau, G. Internal report. 2018; (available upon request). [Google Scholar]
Material | E (MPa) | E (MPa) | E (MPa) | S (MPa) | S (MPa) | ||
---|---|---|---|---|---|---|---|
CFRP | 125,000 | 7800 | 7800 | 2138 | 56 | 0.29 | 0.03 |
Material | E (MPa) | (MPa) | (MPa) | |
---|---|---|---|---|
Araldite 420 A/B | 1500 | 27 | 37 | 0.33 |
Surface Free Energy (mN/m) | |||
---|---|---|---|
Liquid | |||
Deionized water | 51.0 | 22.0 | 73.0 |
Glycerol | 26.4 | 37.0 | 63.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morano, C.; Tao, R.; Alfano, M.; Lubineau, G. Effect of Mechanical Pretreatments on Damage Mechanisms and Fracture Toughness in CFRP/Epoxy Joints. Materials 2021, 14, 1512. https://doi.org/10.3390/ma14061512
Morano C, Tao R, Alfano M, Lubineau G. Effect of Mechanical Pretreatments on Damage Mechanisms and Fracture Toughness in CFRP/Epoxy Joints. Materials. 2021; 14(6):1512. https://doi.org/10.3390/ma14061512
Chicago/Turabian StyleMorano, Chiara, Ran Tao, Marco Alfano, and Gilles Lubineau. 2021. "Effect of Mechanical Pretreatments on Damage Mechanisms and Fracture Toughness in CFRP/Epoxy Joints" Materials 14, no. 6: 1512. https://doi.org/10.3390/ma14061512
APA StyleMorano, C., Tao, R., Alfano, M., & Lubineau, G. (2021). Effect of Mechanical Pretreatments on Damage Mechanisms and Fracture Toughness in CFRP/Epoxy Joints. Materials, 14(6), 1512. https://doi.org/10.3390/ma14061512