A Simple Method for a Protective Coating on Stainless Steel against Molten Aluminum Alloy Comprising Polymer-Derived Ceramics, Oxides and Refractory Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protective Material
2.2. Methods
2.2.1. Protective Material Characterization
2.2.2. Protective Coating
Preparation and Tests in Molten AlSi12
Characterizations
3. Results and Discussion
3.1. Protective Material Properties
3.2. Protective Coating on Planar 304L Samples
3.2.1. Topology and Adhesion
3.2.2. Surface Energy
3.3. TES Application
3.3.1. Planar 304L Substrate
3.3.2. Components for TES Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Industrial technical used for casting molds of aluminum based on graphite or boron nitride (commercial solutions, CONDAT, DYCOTE and ALUMINUM MARTIGNY);
- PVD coating with TiAlN or AlCrN (BALINIT commercial coatings named Alcrona pro® and futurea® Oerlikon balzers Ferrières-en-Brie France);
- Protective layer with a Polymer-Derived Si-Based Ceramics (coating based on commercial raw materials with polysiloxane and glass frit);
- CVD coating, aluminization by pack cementation as mentioned in [30].
Coating | Process | Thickness | Crosscut Adhesion Test % Area Removed | Pull-Off Adhesion Test | Aging in Liquid AlSi12 at 700 °C 600 and 1200 h |
---|---|---|---|---|---|
CONDAT Bstop® Based on BN | Spray Drying at 25 °C | 225 µm | 26% | Not realized Adhesion not effective | |
CONDAT Gstart® Based on graphite | Spray Drying at 25 °C | 80 µm | 15% | <at 1 MPa (cohesive break) After TTh (620 °C) | Some attack points at 600 °C Delamination of the layer after 1200H |
DYCOTE Sub layerDR87® | Dip-coating Drying at 75 °C | 220 µm | 11% | 5.3 MPa without TTh (cohesive break) No adhesion of the layer after TTh (620 °C) | |
DYCOTE Holcote 110® Based on ZrSiO4 | Dip-coating Drying at 75 °C | 650 µm | 70% | Not realized Adhesion not effective | |
Aluminum Martigny Conductal 8M® | Brushing Drying at 25 °C | 200 µm | 8% | Delamination of the layer after TTh (620 °C) | Not realized Adhesion not effective |
Aluminum Martigny Antonol NB 20® Based on BN | Brushing Drying at 75 °C | 70 µm | 10% | 4.3 MPa (adhesive break) after TTh (620 °C) | Many attack points of corrosion and fragility of the layer adhesion after 1200 h |
Composite of PDC based on SiO2 and glass frit | Dip-coating Drying at 75 °C and curing at 620 °C | 160 µm | 12% | 1.8 MPa without TTh (adhesive break) 4.8 MPa (cohesive break)after TTh (620 °C) | Total loss of the initial layer Decreasing of the initial substrate thickness (2 mm instead of 3.8 mm) Two intermetallic layers created |
Balinit futurea® | PVD TiAlN | 3 µm | 8% | >5.5 MPa (glue break) after TTh (620 °C) | Decreasing of the initial substrate thickness (3.3 mm instead of 3.8 mm) |
Balinit alcrona pro® | PVD AlCrN | 3 µm | 2% | >5.1 MPa (glue break) after TTh (620 °C) | Decreasing of the initial substrate thickness (2.6 mm instead of 3.8 mm) |
Aluminizing pack cementation with Al | CVD: Al2O3 + NH4Cl activator + Al oxidation in air at 1150 °C (1H) | 180 µm of intermetallic layer + oxide layer of 6 µm | Not realized but good adhesion observation | Decreasing of the initial substrate thickness (2 mm instead of 3.8 mm) Two intermetallic layers created |
References
- Li, Z.; Lu, Y.; Huang, R.; Chang, J.; Yu, X.; Jiang, R.; Yu, X.; Roskilly, A.P. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage. Appl. Energy 2021, 283, 116277. [Google Scholar] [CrossRef]
- Blanco-Rodríguez, P.; Rodríguez-Aseguinolaza, J.; Risueño, E.; Tello, M. Thermophysical characterization of Mg–51%Zn eutectic metal alloy: A phase change material for thermal energy storage in direct steam generation applications. Energy 2014, 72, 414–420. [Google Scholar] [CrossRef]
- Risueño, E.; Doppiu, S.; Rodríguez-Aseguinolaza, J.; Blanco, P.; Gil, A.; Tello, M.; Faik, A.; D’Aguanno, B. Experimental investigation of Mg-Zn-Al metal alloys for latent heat storage application. J. Alloys Compd. 2016, 685, 724–732. [Google Scholar] [CrossRef]
- Andraka, C.E.; Kruizenga, A.; Hernandez-Sanchez, B.; Coker, E. Metallic Phase Change Material Thermal Storage for Dish Stirling. Energy Procedia 2015, 69, 726–736. [Google Scholar] [CrossRef] [Green Version]
- Khare, S.; Dell’Amico, M.; Knight, C.; McGarry, S. Selection of materials for high temperature latent heat energy storage. Sol. Energy Mater. Sol. Cells 2012, 107, 20–27. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, R.; Liu, Z.; Lu, G. Thermal reliability test of Al–34%Mg–6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling. Energy Convers. Manag. 2007, 48, 619–624. [Google Scholar] [CrossRef]
- Kotzé, J.P.; Von Backström, T.W.; Erens, P.J. High Temperature Thermal Energy Storage Utilizing Metallic Phase Change Materials and Metallic Heat Transfer Fluids. J. Sol. Energy Eng. 2013, 135, 035001. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, J.; Zhang, Y.; Di, H.; Jiang, Y. Experimental research on a kind of novel high temperature phase change storage heater. Energy Convers. Manag. 2006, 47, 2211–2222. [Google Scholar] [CrossRef]
- Li, F.; Hu, Y.J.; Zhang, R.Y. The Influence of Heating-Cooling Cycles on the Thermal Storage Performances of Al-17 wt.% Si Alloy. Adv. Mater. Res. 2011, 239–242, 2248–2251. [Google Scholar]
- Deqing, W. Phase evolution of an aluminized steel by oxidation treatment. Appl. Surf. Sci. 2008, 254, 3026–3032. [Google Scholar] [CrossRef]
- Kotzé, J.P. Thermal Energy Storage in Metallic Phase Change Materials. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, December 2014. [Google Scholar]
- Tsipas, D.; Triantafyllidis, G.; Kiplagat, J.; Psillaki, P. Degradation behaviour of boronized carbon and high alloy steels in molten aluminium and zinc. Mater. Lett. 1998, 37, 128–131. [Google Scholar] [CrossRef]
- Fukahori, R.; Nomura, T.; Zhu, C.; Sheng, N.; Okinaka, N.; Akiyama, T. Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials. Appl. Energy 2016, 163, 1–8. [Google Scholar] [CrossRef]
- Wang, D.; Bierwagen, G.P. Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 2009, 64, 327–338. [Google Scholar] [CrossRef]
- Colombo, P.; Mera, G.; Riedel, R.; Sorarù, G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. In Ceramics Science and Technology; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2013; pp. 245–320. [Google Scholar]
- Günthner, M.; Kraus, T.; Dierdorf, A.; Decker, D.; Krenkel, W.; Motz, G. Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation. J. Eur. Ceram. Soc. 2009, 29, 2061–2068. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Bang, J.W.; Bin, A.S.; Kim, S.-R.; Kim, Y.; Hwang, K.H.; Pham, V.-H.; Kwon, W.-T. Novel polymer-derived ceramic environmental barrier coating system for carbon steel in oxidizing environments. J. Eur. Ceram. Soc. 2017, 37, 2001–2010. [Google Scholar] [CrossRef]
- Parchovianský, M.; Parchovianská, I.; Švančárek, P.; Motz, G.; Galusek, D. PDC Glass/Ceramic Coatings Applied to Differently Pretreated AISI441 Stainless Steel Substrates. Materials 2020, 13, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parchovianský, M.; Petríková, I.; Švančárek, P.; Leite, M.L.; Motz, G.; Galusek, D. Passive filler loaded polysilazane-derived glass/ceramic coating system applied to AISI 441 stainless steel, part 2: Oxidation behavior in synthetic air. Int. J. Appl. Ceram. Technol. 2020, 17, 1675–1687. [Google Scholar] [CrossRef]
- 15 ans D’expertise Dans L’étude Thermique des Matériaux. Available online: https://www.thermoconcept-sarl.com/ (accessed on 25 February 2021).
- He, Y. Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations. Thermochim. Acta 2005, 436, 122–129. [Google Scholar] [CrossRef]
- Vakili, H.; Ramezanzadeh, B.; Amini, R. The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings. Corros. Sci. 2015, 94, 466–475. [Google Scholar] [CrossRef]
- Zheng, W.; Myers, J. Adhesion Tests and Failure Modes Study on Structural Steel Coatings. In Proceedings of the Society for Protective Coatings (SSPC) Annual Meeting, San Antonio, TX, USA, 14–17 January 2013. [Google Scholar]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Spiesser, A.; Chong, Y.M.; Leung, K.M.; Abel, G.; Ross, G.G.; Walzak, M.J.; Jacklin, R.; Lau, W.M.; Zhang, W.J.; Bello, I. Surface Free Energy of Cubic Boron Nitride Films Deposited on Nanodiamond. J. Phys. Chem. C 2007, 111, 12768–12772. [Google Scholar] [CrossRef]
- Colombo, P.; Raj, R.; Singh, M. Advances in Polymer Derived Ceramics and Composites; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Matjie, R.; Zhang, S.; Zhao, Q.; Mabuza, N.; Bunt, J.R. Tailored surface energy of stainless steel plate coupons to reduce the adhesion of aluminium silicate deposit. Fuel 2016, 181, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Kwon, O.-J.; Lu, N.; Choi, H.-S. Surface free energy changes of stainless steel after one atmospheric pressure plasma treatment. Korean J. Chem. Eng. 2004, 21, 1218–1223. [Google Scholar] [CrossRef]
- Schelm, K.; Morales, E.A.; Scheffler, M. Mechanical and Surface-Chemical Properties of Polymer Derived Ceramic Replica Foams. Materials 2019, 12, 1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, Z.D.; Datta, P.K. Low temperature aluminisation of alloy steels by pack cementation process. Mater. Sci. Technol. 2006, 22, 1177–1184. [Google Scholar] [CrossRef]
Liquid | |||
---|---|---|---|
Water | 21.8 | 51 | 72.8 |
Ethylene glycol | 29 | 19 | 46.1 |
Diiodomethane | 46.6 | 4.2 | 50.8 |
Surface Treatment | Contact Angle Ɵ (°) | Surface Free Energy and Its Components (mJ/m2) | ||||
---|---|---|---|---|---|---|
Water | Diiodomethane | Ethylene Glycol | ||||
Crosslinking at 200 °C in air | 88.1 | 72.7 | 82.0 | 22.6 | 19.2 | 3.4 |
Pyrolysis at 700 °C in Ar | 69.4 | 89 | 82.6 | 26.4 | 9.8 | 16.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quenard, S.; Roumanie, M. A Simple Method for a Protective Coating on Stainless Steel against Molten Aluminum Alloy Comprising Polymer-Derived Ceramics, Oxides and Refractory Ceramics. Materials 2021, 14, 1519. https://doi.org/10.3390/ma14061519
Quenard S, Roumanie M. A Simple Method for a Protective Coating on Stainless Steel against Molten Aluminum Alloy Comprising Polymer-Derived Ceramics, Oxides and Refractory Ceramics. Materials. 2021; 14(6):1519. https://doi.org/10.3390/ma14061519
Chicago/Turabian StyleQuenard, Sébastien, and Marilyne Roumanie. 2021. "A Simple Method for a Protective Coating on Stainless Steel against Molten Aluminum Alloy Comprising Polymer-Derived Ceramics, Oxides and Refractory Ceramics" Materials 14, no. 6: 1519. https://doi.org/10.3390/ma14061519
APA StyleQuenard, S., & Roumanie, M. (2021). A Simple Method for a Protective Coating on Stainless Steel against Molten Aluminum Alloy Comprising Polymer-Derived Ceramics, Oxides and Refractory Ceramics. Materials, 14(6), 1519. https://doi.org/10.3390/ma14061519