Changing in Larch Sapwood Extractives Due to Distinct Ionizing Radiation Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Radiations
2.3. Solid-Liquid Extraction
2.4. GC-MS Characterisation
2.5. FT-IR Spectroscopy Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Saeman, J.F.; Millett, M.A.; Lawton, E.J. Effect of high-energy cathode rays on cellulose. Ind. Eng. Chem. 1952, 44, 2848–2852. [Google Scholar] [CrossRef]
- Fischer, K.; Goldberg, W. Changes in lignin and cellulose by irradiation. Makromol. Chem. Marcomol. Symp. 1987, 12, 303–322. [Google Scholar] [CrossRef]
- Buremester, A. The improvement of wood by radiation-initiated polymerisation of monomer plastic. Holz Roh Werkst. 1967, 25, 11–25. [Google Scholar]
- Seifert, K. Zur Chemie gammabestrahlten Holzes. Holz Roh Werkst. 1964, 22, 267–275. [Google Scholar] [CrossRef]
- Hoffmann, P.; Schweers, W. On the hydrogenolysis of lignin. 10. Comparative hydrogenolyses of lignins, lignosulfonic acid, and lignosulfonate model compounds under irradiation with γ-rays. Paperi Ja Puu. 1976, 58, 227–244. [Google Scholar]
- Schnabel, T.; Huber, H.; Grünewald, T.; Lichtenegger, H.C.; Petutschnigg, A. Changes in mechanical and chemical wood properties by electron beam irradiation. Appl. Surf. Sci. 2015, 332, 704–709. [Google Scholar] [CrossRef]
- Schnabel, T.; Huber, H. Improving the weathering on larch wood samples by electron beam irradiation (EBI). Holzforschung 2014, 68, 679–683. [Google Scholar] [CrossRef]
- Baccaro, S.; Carewska, M.; Casieri, C.; Cemmi, A.; Lepore, A. Structure modifications and interaction with moisture in γ-irradiated pure cellulose by thermal analysis and infrared spectroscopy. Polym. Degrad. Stabil. 2013, 98, 2005–2010. [Google Scholar] [CrossRef]
- LaVerne, J.A.; Driscoll, M.S.; Al-Sheikhly, M. Radiation stability of lignocellulosic material compounds. Radiat. Phys. Chem. 2000, 171, 108716. [Google Scholar] [CrossRef]
- Huber, H.; Haas, R.; Petutschnigg, A.; Grüll, G.; Schnabel, T. Changes in wettability of wood surface using electron beam irradiation. Wood Mater. Sci. Eng. 2020, 15, 237–240. [Google Scholar] [CrossRef]
- Henniges, U.; Hasani, M.; Potthast, A.; Westman, G.; Rosenau, T. Electron beam irradiation of cellulosic materials—Opportunities and limitations. Materials 2013, 6, 1584–1598. [Google Scholar] [CrossRef] [Green Version]
- Lawniczak, M.; Razkowski, J. The influence of extractives on the radiation stability of wood. Wood Sci. Technol. 1970, 4, 45–49. [Google Scholar] [CrossRef]
- Fengel, D.; Grosser, D. Chemical composition of softwoods and hardwoods—A bibliographical review. Holz Roh Werkst. 1975, 33, 32–34. [Google Scholar] [CrossRef]
- Fengel, D.; Wegner, G. Wood Chemistry Ultrastructure Reactions; Verlag Kessel: Remagen, Germany, 2003. [Google Scholar]
- Wagner, K.; Roth, C.; Willför, S.; Musso, M.; Petutschigg, A.; Oostingh, G.J.; Schnabel, T. Identification of antimicrobial compounds in different hydrophilic larch bark extracts. BioRescources 2019, 14, 5807–5815. [Google Scholar]
- Willför, S.M.; Hemming, J.; Raunanen, M.; Holmbom, B. Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung 2003, 57, 359–372. [Google Scholar] [CrossRef]
- Wagner, K.; Musso, M.; Kain, S.; Willför, S.; Petutschnigg, A.; Schnabel, T. Larch wood residues valorization through extraction and utilization of high value-added products. Polymers 2020, 12, 359. [Google Scholar] [CrossRef] [Green Version]
- Schwanninger, M.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Su, F.; Jiang, J.; Sun, O.; Lu, F. Changes in chemical composition and microstructure of bamboo after gamma ray irradiation. BioRescources 2014, 9, 5794–5800. [Google Scholar]
- Yang, G.; Zhang, Y.; Wei, M.; Shao, H.; Hu, X. Influence of γ-ray radiation on the structure and properties of paper grade bamboo pulp. Carbohydr. Polym. 2010, 81, 114–119. [Google Scholar] [CrossRef]
- Polvi, J.; Nordlund, K. Low-energy irradiation effects in cellulose. J. Appl. Phys. 2014, 115, 023521. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagilferr, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Błaszak, M.; Nowak, A.; Lachowicz, S.; Migdał, W.; Ochmian, I. E-Beam irradiation and ozonation as an alternative to the sulphuric method of wine preservation. Molecules 2019, 24, 3406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zule, J.; Čufar, K.; Tišler, V. Hydrophilic extractives in heartwood of European larch (Larix decidua Mill). Drv. Ind. 2016, 67, 363–370. [Google Scholar] [CrossRef]
- Nisula, L. Wood Extractives in Conifers. A Study of Steamwood and Knots of Industrially Important Species. Ph.D. Thesis, Åbo Akademi University, Turku, Finland, 2018. [Google Scholar]
Component Groups | Blank Larch Sapwood (mg/g) | EBI-Treated Larch Sapwood (mg/g) | X-ray-Treated Larch Sapwood (mg/g) |
---|---|---|---|
Terpenoid | 0.185 | 0.038 | 0.104 |
Alcohol | 0.009 | 0.001 | 0.003 |
Fatty acids | 0.486 | 0.124 | 0.217 |
Stilbenoid | 0.005 | 0.000 | 0.000 |
Resin acids | 2.083 | 0.177 | 0.547 |
Aliphatic compounds | 0.005 | 0.001 | 0.002 |
Hydroxy resin acids | 0.051 | 0.010 | 0.023 |
Lignans | 0.062 | 0.002 | 0.011 |
Precursor of Lignin | 0.020 | 0.005 | 0.010 |
Unknown | 0.962 | 0.130 | 0.306 |
Component Groups | Blank Larch Sapwood (mg/g) | EBI-Treated Larch Sapwood (mg/g) | X-ray-Treated Larch Sapwood (mg/g) |
---|---|---|---|
Carboxylic acids | 0.051 | 0.155 | 0.348 |
Phenylpropanoid | 0.242 | 0.253 | 0.654 |
Polyhydric alcohols | 0.027 | 0.195 | 0.486 |
Single sugars | 0.415 | 0.832 | 2.043 |
Aliphatic acids | 0.064 | 0.096 | 0.323 |
Resin acids | 0.028 | 0.061 | 0.225 |
Polyphenols | 7.019 | 0.499 | 2.659 |
Phytosterine | 0.028 | 0.005 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnabel, T.; Barbu, M.C.; Tudor, E.M.; Petutschnigg, A. Changing in Larch Sapwood Extractives Due to Distinct Ionizing Radiation Sources. Materials 2021, 14, 1613. https://doi.org/10.3390/ma14071613
Schnabel T, Barbu MC, Tudor EM, Petutschnigg A. Changing in Larch Sapwood Extractives Due to Distinct Ionizing Radiation Sources. Materials. 2021; 14(7):1613. https://doi.org/10.3390/ma14071613
Chicago/Turabian StyleSchnabel, Thomas, Marius Cătălin Barbu, Eugenia Mariana Tudor, and Alexander Petutschnigg. 2021. "Changing in Larch Sapwood Extractives Due to Distinct Ionizing Radiation Sources" Materials 14, no. 7: 1613. https://doi.org/10.3390/ma14071613
APA StyleSchnabel, T., Barbu, M. C., Tudor, E. M., & Petutschnigg, A. (2021). Changing in Larch Sapwood Extractives Due to Distinct Ionizing Radiation Sources. Materials, 14(7), 1613. https://doi.org/10.3390/ma14071613