Determination of Physicomechanical Characteristics of the Cement Mortar with Added Fiberglass Waste Treated with Hydrogen Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Fiberglass Waste (before and after the Hydrogen Plasma Treatment)—Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) Analysis
2.2. Experiment Description—Determination of Flexural and Compressive Strength
- 450 ± 2 g cement
- 1350 ± 5 g standardized sand CEN
- 225 ± 1 g water
- PS 3 wt %—436.5 ± 1 g cement
- 13.5 ± 0.5 g hydrogen plasma vitrified fiberglass
- 1350 ± 5 g standardized sand CEN
- 225 ± 1 g water
- PS 6 wt %—423 ± 1 g cement
- 27 ± 0.5 g hydrogen plasma vitrified fiberglass
- 1350 ± 5 g standardized sand CEN
- 225 ± 1 g water
- PS 10 wt %—405 ± 1 g cement
- 45 ± 0.5 g hydrogen plasma vitrified fiberglass
- 1350 ± 5 g standardized sand CEN
- 225 ± 1 g water
- 2 days ± 30 min.
- 7 days ± 30 min.
- 28 days ± 30 min.
3. Results
3.1. Determination of Flexural Strength
3.2. Determination of Compression Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lupu, M.L.; Isopescu, D.N.; Cucoş, I.; Antonescu, I.; Maxineasa, S.G.; Baciu, I.-R. Researches on energy conversion of municipal waste by plasma decomposition for energy-efficiency in civil engineering. Iop Conf. Ser. Mater. Sci. Eng. 2020, 789, 012035. [Google Scholar] [CrossRef]
- Umberto, A. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 2012, 32, 625–639. [Google Scholar]
- Leal-Quirós, E. Plasma Processing of Municipal Solid Waste. Braz. J. Phys. 2004, 34, 1587–1593. [Google Scholar] [CrossRef]
- Lal, P.M.; Singh, C.J. Plasma Gasification: A Sustainable Solution for the Municipal Solid Waste Management in the State of Madhya Pradesh. Int. J. Environ. Sci. 2012, 3, 306. [Google Scholar]
- Maxineasa, S.G.; Taranu, N.; Bejan, L.; Isopescu, D.; Banu, O.M. Environmental impact of carbon fibre-reinforced polymer flexural strengthening solutions of reinforced concrete beams. Int. J. Life Cycle Assess. 2015, 20, 1343–1358. [Google Scholar] [CrossRef]
- Miller, A.; Ip, K. Sustainable construction materials. In Design and Management of Sustainable Built Environments; Yao, R., Ed.; Springer: London, UK, 2013; pp. 341–358. [Google Scholar]
- Abousnina, R.; Manalo, A.; Ferdous, W.; Lokuge, W.; Benabed, B.; Al-Jabri, K.S. Characteristics, strength development and microstructure of cement mortar containing oil-contaminated sand. Constr. Build. Mater. 2020, 252, 119155. [Google Scholar] [CrossRef]
- Cameron, N.N.; Rapp, C.F. Fiberglass. Encycl. Mater. Sci. Technol. 2001, 2, 3142–3146. [Google Scholar]
- Linhart, J.G. Plasma Physycs; EURATOM: Brussels, Belgium, 1969. [Google Scholar]
- Carpinlioglu, M.O.; Sanlisoy, A. Performance assessment of plasma gasification for waste to energy conversion: A methodology for thermodynamic analysis. Int. J. Hydrogen Energy 2018, 43, 11493–11504. [Google Scholar] [CrossRef]
- Morozov, A.I. Introduction to Plasma Dynamics; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Anyaegbunam, F.N.C. Thermal Plasma Process for Hazardous Waste Treatment. Int. J. Eng. Res. Technol. 2014, 3, 1769–1773. [Google Scholar]
- Moustakas, K.; Fatta, D.; Malamis, S.; Haralambous, K.; Loizidou, M. Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J. Hazard. Mater. 2005, 123, 120–126. [Google Scholar] [CrossRef]
- University of Leeds. Report FLEXI-PYROCAT—Flexible Pyrolysis-Catalysis Processing of Waste Plastics, Supported by the Research and Innovation Staff Exchange Project—Grant Number: 643322-FLEXI-PYROCAT; University of Leeds: Leeds, UK, 2016. [Google Scholar]
- Academia Română. Micul Dicționar Academic; Univers Enciclopedic: Bucharest, Romania, 2010; Volume 2. [Google Scholar]
- US Environmental Protection Agency. Handbook: Vitrification Technologies for Treatment of Hazardous and Radioactive Waste; US Environmental Protection Agency: Washington, DC, USA, 2013. [Google Scholar]
- Chawla, K.K. Glass Fibers. Encycl. Mater. Sci. Technol. 2001, 2, 3541–3545. [Google Scholar]
- Siddika, A.; Mamun, A.; Ferdous, W.; Saha, A.K.; Alyousef, R. 3D-printed concrete: Applications, performance, and challenges. J. Sustain. Cem. Based Mater. 2019, 9, 127–164. [Google Scholar] [CrossRef]
- Khazanov, V.E.; Kolesov, Y.I.; Trofimov, N.N. Glass Fibres, Fibre Science and Technology. Soviet Advanced Composites Technology Series; Springer: Dordrecht, The Netherlands, 1995; Volume 5, pp. 15–230. [Google Scholar]
- Johnson, T. Recycling Composite Materials. ThoughtCo. Available online: thoughtco.com/recycling-composite-materials-820337 (accessed on 27 January 2021).
- The Quanta 200 3D. Simplified Operation Manual. Available online: mri.psu.edu/sites/default/files/file_attach/fib_sop.pdf (accessed on 26 January 2021).
- Silva, M.A.P.; Ferri, F.A. Nanocharacterization Techniques; William Andrew Publishing: Oxford, UK, 2017; pp. 1–35. [Google Scholar]
- Orasugh, J.T.O.; Ghosh, S.K.; Chattopadhyay, D. Fiber-Reinforced Nanocomposites: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 199–233. [Google Scholar]
- Patel, J.P.; Parsania, P.H. Biodegradable and Biocompatible Polymer Composites; Woodhead Publishing: Duxford, UK, 2018; pp. 55–79. [Google Scholar]
- Franzoni, E.; Pigino, B.; Pistolesi, C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cem. Concr. Compos. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Baltazar, L.; Santana, J.; Lopes, B.; Rodrigues, M.P.; Correia, J.R. Surface skin protection of concrete with silicate-based impregnations: Influence of the substrate roughness and moisture. Constr. Build. Mater. 2014, 70, 191–200. [Google Scholar] [CrossRef]
- LaRosa Thompson, J.L.; Silsbee, M.R.; Gill, P.M.; Scheetz, B.E. Characterization of silicate sealers on concrete. Cem. Concr. Res. 1997, 27, 1561–1567. [Google Scholar] [CrossRef]
- Pigino, B.; Leemann, A.; Franzoni, E.; Lura, P. Ethyl silicate for surface treatment of concrete—Part II: Characteristics and performance. Cem. Concr. Compos. 2012, 34, 313–321. [Google Scholar] [CrossRef]
- Asociația de Standardizare din România. SR EN 196-1:2016—Methods of Testing Cement—Part 1: Determination of Strength; Asociația de Standardizare din România: Bucharest, Romania, 2016. [Google Scholar]
- Abdel-Gawwad, H.A.; Metwally, K.A.; Tawfik, T.A.; Mohammed, M.S.; Hassan, H.S.; Heikal, M.; El-Kattan, I.M. Evaluating the performance of high volume fly ash-blended-cement mortar individually containing nano- and ultrafine micro-magnesia. J. Build. Eng. 2021, 36, 102129. [Google Scholar] [CrossRef]
- Yang, J.; Hu, H.; He, X.; Su, Y.; Wang, Y.; Tan, H.; Pan, H. Effect of steam curing on compressive strength and microstructure of high volume ultrafine fly ash cement mortar. Constr. Build. Mater. 2021, 266, 120894. [Google Scholar] [CrossRef]
- Sáez del Bosque, I.F.; Medina, J.M.; Frías, M.; Sánchez de Rojas, M.I.; Medina, C. Use of biomass-fired power plant bottom ash as an addition in new blended cements: Effect on the structure of the C-S-H gel formed during hydration. Constr. Build. Mater. 2019, 228, 117081. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Camões, A.; Branco, F.G.; Matos, J.C. Effect of Biomass Fly Ash on Fresh and Hardened Properties of High Volume Fly Ash Mortars. Crystals 2021, 11, 233. [Google Scholar] [CrossRef]
- Deboucha, W.; Alachek, I.; Plassiard, J.-P.; Plé, O. New Composite Material for Masonry Repair: Mortar Formulations and Experimental Studies. Materials 2021, 14, 912. [Google Scholar] [CrossRef] [PubMed]
Samples | Age of Curing | ||||||
---|---|---|---|---|---|---|---|
2 Days | SD | 7 Days | SD | 28 Days | SD | ||
Fracture load—Ff [kN] | PM | 1.31 | - | 2.33 | - | 2.63 | - |
PS 3 wt % | 1.40 | - | 2.40 | - | 2.82 | - | |
PS 6 wt % | 1.36 | - | 2.08 | - | 2.65 | - | |
PS 10 wt % | 1.21 | - | 2.03 | - | 2.44 | - | |
Flexural strength—Rf [MPa] | PM | 3.1 | 0.27 | 5.5 | 0.05 | 6.3 | 0.41 |
PS 3 wt % | 3.3 | 0.12 | 5.6 | 0.56 | 6.6 | 0.21 | |
PS 6 wt % | 3.2 | 0.23 | 4.9 | 0.37 | 6.2 | 0.18 | |
PS 10 wt % | 2.8 | 0.21 | 4.8 | 0.37 | 5.6 | 0.49 |
Samples | Age of Curing | ||||||
---|---|---|---|---|---|---|---|
2 Days | SD | 7 Days | SD | 28 Days | SD | ||
Fracture load—Fc [kN] | PM | 11.08 | - | 20.48 | - | 30.84 | - |
PS 3 wt % | 16.01 | - | 33.55 | - | 49.95 | - | |
PS 6 wt % | 15.95 | - | 33.67 | - | 43.64 | - | |
PS 10 wt % | 17.54 | - | 33.58 | - | 43.25 | - | |
Compression strength—Rc [MPa] | PM | 6.90 | 0.52 | 12.8 | 0.47 | 19.0 | 0.91 |
PS 3 wt % | 10.0 | 0.65 | 21.0 | 0.94 | 31.2 | 0.98 | |
PS 6 wt % | 10.0 | 0.32 | 21.0 | 0.84 | 27.3 | 0.80 | |
PS 10 wt % | 11.0 | 0.57 | 21.0 | 0.76 | 26.8 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lupu, M.L.; Isopescu, D.N.; Tuns, I.; Baciu, I.-R.; Maxineasa, S.G. Determination of Physicomechanical Characteristics of the Cement Mortar with Added Fiberglass Waste Treated with Hydrogen Plasma. Materials 2021, 14, 1718. https://doi.org/10.3390/ma14071718
Lupu ML, Isopescu DN, Tuns I, Baciu I-R, Maxineasa SG. Determination of Physicomechanical Characteristics of the Cement Mortar with Added Fiberglass Waste Treated with Hydrogen Plasma. Materials. 2021; 14(7):1718. https://doi.org/10.3390/ma14071718
Chicago/Turabian StyleLupu, Marius Lucian, Dorina Nicolina Isopescu, Ioan Tuns, Ioana-Roxana Baciu, and Sebastian George Maxineasa. 2021. "Determination of Physicomechanical Characteristics of the Cement Mortar with Added Fiberglass Waste Treated with Hydrogen Plasma" Materials 14, no. 7: 1718. https://doi.org/10.3390/ma14071718
APA StyleLupu, M. L., Isopescu, D. N., Tuns, I., Baciu, I. -R., & Maxineasa, S. G. (2021). Determination of Physicomechanical Characteristics of the Cement Mortar with Added Fiberglass Waste Treated with Hydrogen Plasma. Materials, 14(7), 1718. https://doi.org/10.3390/ma14071718