Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach
Abstract
:1. Introduction
- ◦
- To identify the relevant publication field, highly used keywords, most active authors, most cited articles, and regions with the largest impact on the field of the fracture properties of FRCBMs.
- ◦
- To observe the present research state and its focus on various factors during the last two decades.
- ◦
- To find gaps in the existing research to guide the directions for future research.
2. Experimental Strategies
3. Science Mapping Results and Discussions
3.1. Publication Area and Annual Trend
3.2. Keyword Co-Occurrence Scientific Mapping
3.3. Co-Authorship Scientific Mapping
3.4. Bibliographic Coupling Network Analysis
3.5. Countries Active in Research of CBM Fracture Properties
4. Fibers
4.1. Fiber Types
4.1.1. Steel Fibers
4.1.2. Polymeric Fibers
Synthetic Polymer Fibers
Natural Polymer Fibers
4.1.3. Inorganic Fibers
Silica Fibers
Aluminosilicate and Alumina Fibers
Basalt Fibers
Other Inorganic Fibers
4.1.4. Carbon Fibers
Polymeric Carbon Fibers
Carbon Nanofibers
4.2. Fiber Geometry
4.2.1. Size of Reinforcement
4.2.2. Cross Section and Longitudinal Geometry
4.2.3. Equivalent Diameter
4.2.4. Efficient Diameter
4.2.5. Fiber Aspect Ratio
4.2.6. Fiber Count and Specific Surface
5. Factors Affecting Fracture Properties of FRCBMs
5.1. Influence of Fiber
5.1.1. Fiber Type
5.1.2. Fiber Content
5.2. Influence of Cement Matrix
5.2.1. Influence of Water–Cement Ratio
5.2.2. Influence of Aggregate
Aggregate Maximum Particle Size
Aggregate Type
6. Analytical Models on Fracture Properties
- (a)
- Initial fracture toughness () model
- (b)
- Unstable fracture toughness () model
- (c)
- Fracture energy () model
- (d)
- Length of fracture process zone () model
7. Discussions on Fracture Mechanism
8. Conclusions and Future Prospects
8.1. Conclusions
- (1)
- Scientometric analysis revealed that the publications relevant to the current study were mostly in Engineering and Materials Science area. A gradual increase in publications was observed on the fracture properties of CBMs and FRCBMs. However, an abrupt hike was observed in the last decade. From the literature, it was found that the top five most widely used keywords were concrete, reinforced concrete, fracture, fracture mechanics, and fracture energy. It was clear from the visualization network that fibers have a significant connection with the fracture properties of FRCBMs and could comprise the factor with the most influencing on fracture performance.
- (2)
- The incorporation of fibers has a considerable effects on the fracture performance of FRCBMs. Fiber type, tensile strength, morphology, and content can affect fracture properties. Micro-fibers can resist micro-cracks, interfacial modifications, and filling effects in a matrix to enhance fracture properties. Usually, with increasing microfiber content, fracture parameters first increase and then decrease. Hence, to achieve the best fracture parameters, one must find the optimum fiber content.
- (3)
- Compared to micro-fibers, the availability of macro-fibers in a matrix can significantly enhance fracture properties. The best fracture properties can be achieved with steel fibers. Mostly, with an increase of macro-fiber content, fracture parameters improve.
- (4)
- Multiscale hybrid fibers in CBMs have the ability to resist cracks at various scales and hence enhance fracture parameters, particularly initial fracture toughness.
- (5)
- The results of fracture parameters from various studies revealed that different ingredients in CBMs, including the w/c, dm, and type of aggregate, can affect the fracture parameters of FRCBMs.
- (6)
- Mostly, increases in the w/c lead to decrease the fracture parameters of FRCBMs while a lower w/c decreases defects in the ITZ and thus enhance the fiber–matrix interfacial bond strength.
- (7)
- The effect of dm is that a large dm usually increases the crack bypass distance or energy consumption of broken aggregate, but a higher dm might alter the dispersion of fibers in a matrix. Generally, it has been found that fibers contribute more to fracture properties in FRCBMs than dm.
- (8)
- The influence of aggregate type on fracture parameters depends on the aggregate’s characteristics. For example, a lightweight aggregate reduces fracture energy, while a crumb rubber aggregate improves fracture energy but decreases fracture toughness.
- (9)
- The main crack-resisting mechanisms that occur in FRCBMs are fiber rupture, fiber bridging, fiber pull-out, fiber stress transfer effect, and crack deflection.
- (10)
- Micro-fibers have some additional advantages like a filling effect and ITZ improvement. Porosity can be reduced and pore structures can be enhanced due to the filling effect, while aggregate–cement bond strength can be improved via interfacial modification.
- (11)
- With macro-fibers, besides their inherent properties, their addition to CBMs can enhance fracture performance due to the mechanical interlocking of different fibers.
- (12)
- Fiber hybridization not only provides crack resistance at a single stage like a single fiber but also enhances the fracture performance of FRCBMs with the combined effect of hybrid fibers. Specifically, hybrid fibers containing micro-fibers, in addition to providing crack resistance, can improve fiber–matrix bond strength.
8.2. Research Prospects
- Durability aspect: The addition of various types of hybrid fibers is effective for fracture properties. However, the physical durability of CBMs with the addition of hybrid fibers must be considered, especially for organic natural fibers like bagasse, hemp, jute, coconut, bamboo, wool, coir, banana, hemp, palm, and sisal. Therefore, it is recommended for further studies to evaluate the fracture characteristic of FRCBMs under freezing and thawing actions, water percolation/permeability, and temperature stresses, i.e., the high heat of hydration. Additionally, the exploration of the fracture properties of FRCBMs is required to evaluate their chemical durability to challenges like alkali-aggregate reactions, sulphate attacks, chloride ingresses, delayed ettringite formation, and the corrosion of reinforcement because FRCBMs are commonly used in these critical environments.
- Fiber dispersion characteristics: A correlation between fracture properties and fiber dispersion characteristics for FRCBMs needs to be developed in the future because fiber orientation and distribution in the matrix have key functions for the crack growth path.
- Fracture mode: The type-II fracture (slip-open) and type III fracture (tear) behavior of FRCBMs should be determined because shear failure, in addition to flexural failure, is another fundamental problem of structures.
- Computer tools: Computing software and tools like the machine-learning approach for the analysis of crack occurrence, crack morphology, and crack propagation path should be applied, as seen in previous studies focusing the purpose on forecasting the fracture behavior of various FRCBM types in engineering and scientific applications.
- Raw materials for sustainable construction: Focus must be given to the selection of hybrid fibers from raw material like waste steel fibers, waste rubber, recycled plastic, recycled aggregate, steel slag powder, and waste glass powder for the improved fracture performance of sustainable FRCBMs.
- High temperature performance: At the present stage, the fracture properties of FRCBMs with the addition of multi-scale hybrid fibers under high temperature are still limited. Therefore, it is recommended to study the fire resistance of hybrid fibers in CBMs under fire for structural applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR-glass | Alkali-resistant glass |
CBMs | Cement-based materials |
C-glass | Chemical glass |
CNFs | Carbon nanofibers |
CNTs | Carbon nanotubes |
CSV | Comma separated values |
CW | Calcium carbonate whisker |
dm | Maximum aggregate size |
E-glass | Electrical glass |
FRCBMs | Fiber-reinforced cement-based materials |
FRP | Fiber-reinforced polymer |
GO | Graphene oxide |
HPC | High-performance concrete |
HSC | High strength concrete |
ITZ | Interfacial transition zone |
MWCNTs | Multiwall carbon nanotubes |
PAN | Polyacrylonitrile |
PC | Plain concrete |
PE | Polyethylene |
PET | Polyethylene terephthalate |
PP | Polypropylene |
PVA | Polyethylene terephthalate |
SCC | Self-compacting concrete |
SFRC | Steel fiber-reinforced concrete |
S-glass | Structural glass |
SRP | Steel-reinforced polymer |
SWCNTs | Single-wall carbon nanotubes |
UHPC | Ultra-high-performance concrete |
w/c | Water–cement ratio |
References
- Chu, S.; Kwan, A. Mixture design of self-levelling ultra-high performance FRC. Constr. Build. Mater. 2019, 228, 116761. [Google Scholar] [CrossRef]
- Chu, S.; Li, L.; Kwan, A. Development of extrudable high strength fiber reinforced concrete incorporating nano calcium carbonate. Addit. Manuf. 2021, 37, 101617. [Google Scholar] [CrossRef]
- Chu, S.; Ye, H.; Huang, L.; Li, L. Carbon fiber reinforced geopolymer (FRG) mix design based on liquid film thickness. Constr. Build. Mater. 2021, 269, 121278. [Google Scholar] [CrossRef]
- Brandt, A.M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 2008, 86, 3–9. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T. High-performance fiber-reinforced concrete: A review. J. Mater. Sci. 2016, 51, 6517–6551. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Li, Z.; Guo, J.; Gong, H.; Gu, C. Research progress on CNTs/CNFs-modified cement-based composites—A review. Constr. Build. Mater. 2019, 202, 290–307. [Google Scholar] [CrossRef]
- Carpinteri, A.; Fortese, G.; Ronchei, C.; Scorza, D.; Vantadori, S. Mode I fracture toughness of fibre reinforced concrete. Theor. Appl. Fract. Mech. 2017, 91, 66–75. [Google Scholar] [CrossRef]
- Alberti, M.; Enfedaque, A.; Gálvez, J. Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size. Eng. Fract. Mech. 2016, 154, 225–244. [Google Scholar] [CrossRef]
- Gdoutos, E.E.; Konsta-Gdoutos, M.S.; Danoglidis, P.A. Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study. Cem. Concr. Compos. 2016, 70, 110–118. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010, 40, 1052–1059. [Google Scholar] [CrossRef]
- Xu, S.; Lyu, Y.; Xu, S.; Li, Q. Enhancing the initial cracking fracture toughness of steel-polyvinyl alcohol hybrid fibers ultra high toughness cementitious composites by incorporating multi-walled carbon nanotubes. Constr. Build. Mater. 2019, 195, 269–282. [Google Scholar] [CrossRef]
- Han, B.; Dong, S.; Ou, J.; Zhang, C.; Wang, Y.; Yu, X.; Ding, S. Microstructure related mechanical behaviors of short-cut super-fine stainless wire reinforced reactive powder concrete. Mater. Des. 2016, 96, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Cao, M. Effect of hybrid basalt fibre length and content on properties of cementitious composites. Mag. Concr. Res. 2021, 1–12. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Effectiveness of hair and wave polypropylene fibers for concrete roads. Constr. Build. Mater. 2018, 166, 581–591. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber. Constr. Build. Mater. 2018, 182, 703–715. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019, 203, 174–187. [Google Scholar] [CrossRef]
- Khan, M.; Rehman, A.; Ali, M. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Constr. Build. Mater. 2020, 244, 118382. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Ali, M. Cracking behaviour and constitutive modelling of hybrid fibre reinforced concrete. J. Build. Eng. 2020, 30, 101272. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Ali, M. Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Constr. Build. Mater. 2018, 192, 742–753. [Google Scholar] [CrossRef]
- Ahmad, W.; Farooq, S.H.; Usman, M.; Khan, M.; Ahmad, A.; Aslam, F.; Al Yousef, R.; Al Abduljabbar, H.; Sufian, M. Effect of Coconut Fiber Length and Content on Properties of High Strength Concrete. Materials 2020, 13, 1075. [Google Scholar] [CrossRef] [Green Version]
- Smarzewski, P. Flexural toughness evaluation of basalt fibre reinforced HPC beams with and without initial notch. Compos. Struct. 2020, 235, 111769. [Google Scholar] [CrossRef]
- Smarzewski, P. Study of Toughness and Macro/Micro-Crack Development of Fibre-Reinforced Ultra-High Performance Concrete After Exposure to Elevated Temperature. Materials 2019, 12, 1210. [Google Scholar] [CrossRef] [Green Version]
- Smarzewski, P. Flexural Toughness of High-Performance Concrete with Basalt and Polypropylene Short Fibres. Adv. Civ. Eng. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Koksal, F.; Şahin, Y.; Gencel, O.; Yiğit, I. Fracture energy-based optimisation of steel fibre reinforced concretes. Eng. Fract. Mech. 2013, 107, 29–37. [Google Scholar] [CrossRef]
- Saulat, H.; Cao, M.; Khan, M.M.; Khan, M.; Khan, M.M.; Rehman, A. Preparation and applications of calcium carbonate whisker with a special focus on construction materials. Constr. Build. Mater. 2020, 236, 117613. [Google Scholar] [CrossRef]
- Cao, M.; Xie, C.; Li, L.; Khan, M. The relationship between reinforcing index and flexural parameters of new hybrid fiber reinforced slab. Comput. Concr. 2018, 22, 481–492. [Google Scholar]
- Smarzewski, P. Comparative Fracture Properties of Four Fibre Reinforced High Performance Cementitious Composites. Materials 2020, 13, 2612. [Google Scholar] [CrossRef]
- Smarzewski, P. Influence of basalt-polypropylene fibres on fracture properties of high performance concrete. Compos. Struct. 2019, 209, 23–33. [Google Scholar] [CrossRef]
- Smarzewski, P.; Barnat-Hunek, D. Fracture properties of plain and steel-polypropylene-fiber-reinforced high-performance concrete. Mater. Tehnol. 2015, 49, 563–571. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Suchorzewski, J. Mechanical and fracture properties of concrete reinforced with recycled and industrial steel fibers using Digital Image Correlation technique and X-ray micro computed tomography. Constr. Build. Mater. 2018, 183, 283–299. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Ding, X. Evaluation of Shrinkage and Fracture Properties of Internal Cured 100-MPa Ultrahigh-Strength Steel Fiber–Reinforced Concrete. J. Mater. Civ. Eng. 2017, 29, 06017016. [Google Scholar] [CrossRef]
- Ríos, J.D.; Cifuentes, H.; Leiva, C.; Seitl, S. Analysis of the mechanical and fracture behavior of heated ultra-high-performance fiber-reinforced concrete by X-ray computed tomography. Cem. Concr. Res. 2019, 119, 77–88. [Google Scholar] [CrossRef]
- Cao, M.; Xie, C.; Guan, J. Fracture behavior of cement mortar reinforced by hybrid composite fiber consisting of CaCO3 whiskers and PVA-steel hybrid fibers. Compos. Part A Appl. Sci. Manuf. 2019, 120, 172–187. [Google Scholar] [CrossRef]
- Kazemi, M.; Golsorkhtabar, H.; Beygi, M.; Gholamitabar, M. Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods. Constr. Build. Mater. 2017, 142, 482–489. [Google Scholar] [CrossRef]
- Senaratne, S.; Gerace, D.; Mirza, O.; Tam, V.W.; Kang, W.-H. The costs and benefits of combining recycled aggregate with steel fibres as a sustainable, structural material. J. Clean. Prod. 2016, 112, 2318–2327. [Google Scholar] [CrossRef]
- Das, S.; Sobuz, H.R.; Tam, V.W.; Akid, A.S.M.; Sutan, N.M.; Rahman, F.M. Effects of incorporating hybrid fibres on rheological and mechanical properties of fibre reinforced concrete. Constr. Build. Mater. 2020, 262, 120561. [Google Scholar] [CrossRef]
- Barros, J.A.O.; Cruz, J.S. Fracture energy of steel fiber-reinforced concrete. Mech. Compos. Mater. Struct. 2001, 8, 29–45. [Google Scholar] [CrossRef]
- Li, V.C.; Wang, S.; Wu, C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). ACI Mater. J. Am. Concr. Inst. 2001, 98, 483–492. [Google Scholar]
- Li, V.C. On engineered cementitious composites (ECC). J. Adv. Concr. Technol. 2003, 1, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Kalifa, P.; Chene, G.; Galle, C. High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure. Cem. Concr. Res. 2001, 31, 1487–1499. [Google Scholar] [CrossRef]
- Zeiml, M.; Leithner, D.; Lackner, R.; Mang, H.A. How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cem. Concr. Res. 2006, 36, 929–942. [Google Scholar] [CrossRef]
- Bošnjak, J.; Ožbolt, J.; Hahn, R. Permeability measurement on high strength concrete without and with polypropylene fibers at elevated temperatures using a new test setup. Cem. Concr. Res. 2013, 53, 104–111. [Google Scholar] [CrossRef]
- Shao, Y.D.; Wang, W.F. Experimental study on fracture properties of hybrid fiber reinforced concrete. Proceedings of Advanced Materials Research; Trans Tech Publications Ltd.: Zurich, Switzerland, 2012; pp. 518–522. [Google Scholar]
- Cao, M.; Zhang, C.; Li, Y.; Wei, J. Using Calcium Carbonate Whisker in Hybrid Fiber-Reinforced Cementitious Composites. J. Mater. Civ. Eng. 2015, 27, 04014139. [Google Scholar] [CrossRef]
- Banthia, N.; Majdzadeh, F.; Wu, J.; Bindiganavile, V. Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear. Cem. Concr. Compos. 2014, 48, 91–97. [Google Scholar] [CrossRef]
- Maekawa, K.; Ishida, T.; Kishi, T. Multi-scale Modeling of Concrete Performance. J. Adv. Concr. Technol. 2003, 1, 91–126. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.B.; Fischer, G.; Barros, J.A. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites. Cem. Concr. Compos. 2012, 34, 1114–1123. [Google Scholar] [CrossRef]
- Walton, P.; Majumdar, A. Cement-based composites with mixtures of different types of fibres. Composites 1975, 6, 209–216. [Google Scholar] [CrossRef]
- Kobayashi, K.; Cho, R. Flexural characteristics of steel fibre and polyethylene fibre hybrid-reinforced concrete. Composites 1982, 13, 164–168. [Google Scholar] [CrossRef]
- Caggiano, A.; Cremona, M.; Faella, C.; Lima, C.; Martinelli, E. Fracture behavior of concrete beams reinforced with mixed long/short steel fibers. Constr. Build. Mater. 2012, 37, 832–840. [Google Scholar] [CrossRef]
- Liang, N.-H.; Liu, X.-R.; Sun, J. Uniaxial tensile test of multi-scale polypropylene fiber reinforced concrete. Chongqing Daxue Xuebao 2012, 35. [Google Scholar]
- Banthia, N.; Soleimani, S.M. Flexural response of hybrid fiber-reinforced cementitious composites. ACI Mater. J. 2005, 102, 382. [Google Scholar]
- Almusallam, T.; Ibrahim, S.; Al-Salloum, Y.; Abadel, A.; Abbas, H. Analytical and experimental investigations on the fracture behavior of hybrid fiber reinforced concrete. Cem. Concr. Compos. 2016, 74, 201–217. [Google Scholar] [CrossRef]
- Xu, S.; Zhao, G. Fracture Mechanics of Concrete; Science Press: Beijing, China, 2011. [Google Scholar]
- Kosior-Kazberuk, M.; Krassowska, J. Fracture toughness of concrete with basalt fiber. In Proceedings of the MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2019; p. 01008. [Google Scholar]
- Xu, Y.; Zeng, J.; Chen, W.; Jin, R.; Li, B.; Pan, Z. A holistic review of cement composites reinforced with graphene oxide. Constr. Build. Mater. 2018, 171, 291–302. [Google Scholar] [CrossRef]
- Xiao, X.; Skitmore, M.; Li, H.; Xia, B. Mapping Knowledge in the Economic Areas of Green Building Using Scientometric Analysis. Energies 2019, 12, 3011. [Google Scholar] [CrossRef] [Green Version]
- Mryglod, O.; Holovatch, Y.; Kenna, R. Data Mining in Scientometrics: Usage Analysis for Academic Publications. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 241–246. [Google Scholar]
- Darko, A.; Chan, A.P.; Huo, X.; Owusu-Manu, D.-G. A scientometric analysis and visualization of global green building research. Build. Environ. 2019, 149, 501–511. [Google Scholar] [CrossRef]
- Song, J.; Zhang, H.; Dong, W. A review of emerging trends in global PPP research: Analysis and visualization. Science 2016, 107, 1111–1147. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Bergman, E.M.L. Finding Citations to Social Work Literature: The Relative Benefits of Using Web of Science, Scopus, or Google Scholar. J. Acad. Libr. 2012, 38, 370–379. [Google Scholar] [CrossRef] [Green Version]
- Meho, L.I. Using Scopus’s CiteScore for assessing the quality of computer science conferences. J. Inf. 2019, 13, 419–433. [Google Scholar] [CrossRef]
- Zuo, J.; Zhao, Z.-Y. Green building research–current status and future agenda: A review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Darko, A.; Zhang, C.; Chan, A.P. Drivers for green building: A review of empirical studies. Habitat. Int. 2017, 60, 34–49. [Google Scholar] [CrossRef]
- Markoulli, M.P.; Lee, C.I.; Byington, E.; Felps, W.A. Mapping Human Resource Management: Reviewing the field and charting future directions. Hum. Resour. Manag. Rev. 2017, 27, 367–396. [Google Scholar] [CrossRef]
- Saka, A.B.; Chan, D.W.M. A Scientometric Review and Metasynthesis of Building Information Modelling (BIM) Research in Africa. Buildings 2019, 9, 85. [Google Scholar] [CrossRef] [Green Version]
- Goulden, S.; Erell, E.; Garb, Y.; Pearlmutter, D. Green building standards as socio-technical actors in municipal environmental policy. Build. Res. Inf. 2015, 45, 414–425. [Google Scholar] [CrossRef]
- Jin, R.; Gao, S.; Cheshmehzangi, A.; Aboagye-Nimo, E. A holistic review of off-site construction literature published between 2008 and 2018. J. Clean. Prod. 2018, 202, 1202–1219. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Nagy, Z. Comprehensive analysis of the relationship between thermal comfort and building control research—A data-driven literature review. Renew. Sustain. Energy Rev. 2018, 82, 2664–2679. [Google Scholar] [CrossRef]
- Oraee, M.; Hosseini, M.R.; Papadonikolaki, E.; Palliyaguru, R.; Arashpour, M. Collaboration in BIM-based construction networks: A bibliometric-qualitative literature review. Int. J. Proj. Manag. 2017, 35, 1288–1301. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Su, H.-N.; Lee, P.-C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010, 85, 65–79. [Google Scholar] [CrossRef]
- Yu, F.; Hayes, B.E. Applying data analytics and visualization to assessing the research impact of the Cancer Cell Biology (CCB) Program at the University of North Carolina at Chapel Hill. J. Sci. Librariansh. 2018, 7, 4. [Google Scholar] [CrossRef]
- Chen, J.F.; Teng, J.G. Anchorage Strength Models for FRP and Steel Plates Bonded to Concrete. J. Struct. Eng. 2001, 127, 784–791. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Metaxa, Z.S.; Shah, S.P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 2010, 32, 110–115. [Google Scholar] [CrossRef]
- Wu, Z.; Yuan, H.; Niu, H. Stress Transfer and Fracture Propagation in Different Kinds of Adhesive Joints. J. Eng. Mech. 2002, 128, 562–573. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Wu, Z.; Yin, J. Fracturing behaviors of FRP-strengthened concrete structures. Eng. Fract. Mech. 2003, 70, 1339–1355. [Google Scholar] [CrossRef]
- Yuan, H.; Teng, J.; Seracino, R.; Wu, Z.; Yao, J. Full-range behavior of FRP-to-concrete bonded joints. Eng. Struct. 2004, 26, 553–565. [Google Scholar] [CrossRef]
- Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H. Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2015, 100, 218–224. [Google Scholar] [CrossRef]
- Sim, J.; Park, C.; Moon, D.Y. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Wriggers, P.; Moftah, S. Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elem. Anal. Des. 2006, 42, 623–636. [Google Scholar] [CrossRef]
- Dias, D.P.; Thaumaturgo, C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 2005, 27, 49–54. [Google Scholar] [CrossRef]
- Kang, S.-T.; Lee, Y.; Park, Y.-D.; Kim, J.-K. Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber. Compos. Struct. 2010, 92, 61–71. [Google Scholar] [CrossRef]
- Ferracuti, B.; Savoia, M.; Mazzotti, C. Interface law for FRP–concrete delamination. Compos. Struct. 2007, 80, 523–531. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Hybrid fiber reinforced concrete (HyFRC): Fiber synergy in high strength matrices. Mater. Struct. 2004, 37, 707–716. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Lee, J.-H.; Yoon, Y.-S. Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Compos. Struct. 2013, 106, 742–753. [Google Scholar] [CrossRef]
- Xu, H.H.K.; Quinn, J.B.; Takagi, S.; Chow, L.C.; Eichmiller, F.C. Strong and macroporous calcium phosphate cement: Effects of porosity and fiber reinforcement on mechanical properties. J. Biomed. Mater. Res. 2001, 57, 457–466. [Google Scholar] [CrossRef]
- Capozucca, R. Experimental FRP/SRP–historic masonry delamination. Compos. Struct. 2010, 92, 891–903. [Google Scholar] [CrossRef]
- Kabay, N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014, 50, 95–101. [Google Scholar] [CrossRef]
- Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M.C. Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem. Concr. Res. 2015, 73, 215–227. [Google Scholar] [CrossRef]
- Zou, B.; Chen, S.J.; Korayem, A.H.; Collins, F.; Wang, C.; Duan, W.H. Effect of ultrasonication energy on engineering properties of carbon nanotube reinforced cement pastes. Carbon 2015, 85, 212–220. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Behnia, A.; Pordsari, A.J.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer. PLoS ONE 2016, 11, e0147546. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Bhutta, A.; Banthia, N. Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cem. Concr. Compos. 2019, 103, 183–192. [Google Scholar] [CrossRef]
- Bhutta, A.; Borges, P.H.; Zanotti, C.; Farooq, M.; Banthia, N. Flexural behavior of geopolymer composites reinforced with steel and polypropylene macro fibers. Cem. Concr. Compos. 2017, 80, 31–40. [Google Scholar] [CrossRef]
- Sukontasukkul, P.; Pongsopha, P.; Chindaprasirt, P.; Songpiriyakij, S. Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Constr. Build. Mater. 2018, 161, 37–44. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.; Abdollahnejad, Z.; Illikainen, M. Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibers. Compos. Part B Eng. 2018, 151, 186–200. [Google Scholar] [CrossRef]
- Aulia, T.B. Effects of Polypropylene Fibers on the Properties of High-Strength Concretes; Institutes for Massivbau Baustoffechnologi, University Leipzig: Leipzig, Germany, 2002; Volume 7. [Google Scholar]
- Cooke, T.F. Inorganic Fibers-A Literature Review. J. Am. Ceram. Soc. 1991, 74, 2959–2978. [Google Scholar] [CrossRef]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Zollo, R.F. Fiber-reinforced concrete: An overview after 30 years of development. Cem. Concr. Compos. 1997, 19, 107–122. [Google Scholar] [CrossRef]
- Chand, S. Review Carbon fibers for composites. J. Mater. Sci. 2000, 35, 1303–1313. [Google Scholar] [CrossRef]
- Mehrali, M.; Bagherifard, S.; Akbari, M.; Thakur, A.; Mirani, B.; Mehrali, M.; Hasany, M.; Orive, G.; Das, P.; Emneus, J. Blending electronics with the human body: A pathway toward a cybernetic future. Adv. Sci. 2018, 5, 1700931. [Google Scholar] [CrossRef] [Green Version]
- Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- ASTM, A. Standard Specification for Steel Fibers for Fiber-Reinforced Concrete; American Society for Testing and Materials (ASTM) Committee: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Wang, R.; Gao, X.; Zhang, J.; Han, G. Spatial distribution of steel fibers and air bubbles in UHPC cylinder determined by X-ray CT method. Constr. Build. Mater. 2018, 160, 39–47. [Google Scholar] [CrossRef]
- Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B. Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Constr. Build. Mater. 2017, 139, 286–307. [Google Scholar] [CrossRef] [Green Version]
- Olivito, R.; Zuccarello, F. An experimental study on the tensile strength of steel fiber reinforced concrete. Compos. Part B Eng. 2010, 41, 246–255. [Google Scholar] [CrossRef]
- Hosking, N.; Ström, M.; Shipway, P.; Rudd, C. Corrosion resistance of zinc–magnesium coated steel. Corros. Sci. 2007, 49, 3669–3695. [Google Scholar] [CrossRef]
- Schunemann, C.A. Copper Coated Steel. Google Patents US3311458A, 28 March 1967. [Google Scholar]
- Frazão, C.; Camões, A.; Barros, J.; Gonçalves, D. Durability of steel fiber reinforced self-compacting concrete. Constr. Build. Mater. 2015, 80, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Granju, J.-L.; Balouch, S.U. Corrosion of steel fibre reinforced concrete from the cracks. Cem. Concr. Res. 2005, 35, 572–577. [Google Scholar] [CrossRef]
- Buttignol, T.E.T.; Sousa, J.L.A.O.; Bittencourt, T.N. Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC): A review of material properties and design procedures. Rev. IBRACON Estrut. Mater. 2017, 10, 957–971. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R.; Khatib, J.; Kaur, I. Use of recycled plastic in concrete: A review. Waste Manag. 2008, 28, 1835–1852. [Google Scholar] [CrossRef]
- Ko, Y.-H.; Ahart, M.; Song, J. Investigation of polymorphism for amorphous and semi-crystalline poly (-ethylene terephthalate-) using high-pressure Brillouin spectroscopy. J. Korean Phys. Soc. 2017, 70, 382–388. [Google Scholar] [CrossRef]
- Mwangi, J.P.M. Flexural Behavior of Sisal Fiber Reinforced Concrete Beams. 2002. Available online: https://www.elibrary.ru/item.asp?id=5247147 (accessed on 1 April 2021).
- Larena, A.; Pinto, G. The effect of surface roughness and crystallinity on the light scattering of polyethylene tubular blown films. Polym. Eng. Sci. 1993, 33, 742–747. [Google Scholar] [CrossRef]
- Ryu, G.S.; Lee, Y.B.; Koh, K.T.; Chung, Y.S. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 2013, 47, 409–418. [Google Scholar] [CrossRef]
- Mu, B.; Meyer, C.; Shimanovich, S. Improving the interface bond between fiber mesh and cementitious matrix. Cem. Concr. Res. 2002, 32, 783–787. [Google Scholar] [CrossRef]
- Richardson, A.E. Compressive strength of concrete with polypropylene fibre additions. Struct. Surv. 2006, 24, 138–153. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- Ochi, T.; Okubo, S.; Fukui, K. Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cem. Concr. Compos. 2007, 29, 448–455. [Google Scholar] [CrossRef]
- Redon, C.; Li, V.C.; Wu, C.; Hoshiro, H.; Saito, T.; Ogawa, A. Measuring and Modifying Interface Properties of PVA Fibers in ECC Matrix. J. Mater. Civ. Eng. 2001, 13, 399–406. [Google Scholar] [CrossRef]
- Li, V.C.; Wu, C.; Wang, S.; Ogawa, A.; Saito, T. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC). Materials 2002, 99, 463–472. [Google Scholar]
- Estefen, S.F.; Lourenço, M.I.; Feng, J.; Paz, C.M.; De Lima, D.B. Sandwich Pipe for Long Distance Pipelines: Flow Assurance and Costs. In Proceedings of the Volume 7: Ocean Engineering; ASME International: New York, NY, USA, 2016. [Google Scholar]
- Kanda, T.; Li, V.C. Interface Property and Apparent Strength of High-Strength Hydrophilic Fiber in Cement Matrix. J. Mater. Civ. Eng. 1998, 10, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, B.; Qiu, J.; Yang, E.-H.; Sanjayan, J. Micromechanics constitutive modelling and optimization of strain hardening geopolymer composite. Ceram. Int. 2017, 43, 5999–6007. [Google Scholar] [CrossRef]
- Zheng, Z.; Feldman, D. Synthetic fibre-reinforced concrete. Prog. Polym. Sci. 1995, 20, 185–210. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Qiu, J.; Yang, E.-H. High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A micromechanics-based investigation. Arch. Civ. Mech. Eng. 2017, 17, 555–563. [Google Scholar] [CrossRef]
- Choi, J.-I.; Lee, B.Y.; Ranade, R.; Li, V.C.; Lee, Y. Ultra-high-ductile behavior of a polyethylene fiber-reinforced alkali-activated slag-based composite. Cem. Concr. Compos. 2016, 70, 153–158. [Google Scholar] [CrossRef]
- Lu, W.; Fu, X.; Chung, D. A comparative study of the wettability of steel, carbon, and polyethylene fibers by water. Cem. Concr. Res. 1998, 28, 783–786. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Guo, J.; Li, N.; Li, Y.; Zhou, H.; Liu, Y. Investigation on the Triaxial Mechanical Characteristics of Cement-Treated Subgrade Soil Admixed with Polypropylene Fiber. Appl. Sci. 2019, 9, 4557. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Xie, C.; Li, L.; Khan, M. Effect of different PVA and steel fiber length and content on mechanical properties of CaCO3 whisker reinforced cementitious composites. Mater. Constr. 2019, 69, 200. [Google Scholar] [CrossRef] [Green Version]
- Marthong, C. Use of Polyethylene Terephthalate Fibers for Strengthening of Reinforced Concrete Frame Made of Low-Grade Aggregate. In Earthquakes-Forecast, Prognosis and Earthquake Resistant Construction; IntechOpen: London, UK, 2018. [Google Scholar]
- Lee, S. Effect of Nylon Fiber Addition on the Performance of Recycled Aggregate Concrete. Appl. Sci. 2019, 9, 767. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Tong, H.; Shan, Y.; Yuan, J.; Peng, Q.; Liang, J. Effects of Different Types of Fibers on the Physical and Mechanical Properties of MICP-Treated Calcareous Sand. Materials 2021, 14, 268. [Google Scholar] [CrossRef]
- Shakir, Q.M. Fiber Reinforced Concrete. [CrossRef]
- Ardanuy, M.; Claramunt, J.; Filho, R.D.T. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015, 79, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Azwa, Z.; Yousif, B.; Manalo, A.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Ahmari, S.; Zhang, L. Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. J. Mater. Sci. 2013, 49, 2548–2558. [Google Scholar] [CrossRef]
- Labib, W.A. Utilisation of date palm fibres in cement-based composites: A feasibility study. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; p. 012028. [Google Scholar]
- Zhou, X.; Saini, H.; Kastiukas, G. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete. Front. Built Environ. 2017, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, R.; Gnanavel, C. Synthesis and characterization of treated banana fibers and selected jute fiber based hybrid composites. Mater. Today Proc. 2020, 21, 988–992. [Google Scholar] [CrossRef]
- Kim, H.-H.; Park, C.-G. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex. Sustainability 2016, 8, 386. [Google Scholar] [CrossRef]
- Obele, C.; Ishidi, E. Mechanical properties of coir fiber reinforced Epoxy resin composites for helmet shell. Ind. Eng. Lett. 2015, 5, 7. [Google Scholar]
- Malenab, R.A.J.; Ngo, J.P.S.; Promentilla, M.A.B. Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite. Materials 2017, 10, 579. [Google Scholar] [CrossRef] [Green Version]
- Hasan, N.M.S.; Sobuz, H.R.; Auwalu, A.S.; Tamanna, N. Investigation Into The Suitability Of Kenaf Fiber To Produce Structural Concrete. Adv. Mater. Lett. 2015, 6, 731–737. [Google Scholar] [CrossRef]
- Athiappan, K.; Vijaychandraanth, S. Experimental Study on Flexural Behavior of Sisal Fibre in Reinforced Concrete Beam. Int. J. Eng. Res. Technol. 2014, 3. Available online: https://www.ijert.org/experimental-study-on-flexural-behavior-of-sisal-fibre-in-reinforced-concrete-beam (accessed on 1 April 2021).
- Cabral, M.R.; Nakanishi, E.Y.; Dos Santos, V.; Palacios, J.H.; Godbout, S.; Junior, H.S.; Fiorelli, J. Evaluation of pre-treatment efficiency on sugarcane bagasse fibers for the production of cement composites. Arch. Civ. Mech. Eng. 2018, 18, 1092–1102. [Google Scholar] [CrossRef]
- Jóźwiak-Niedźwiedzka, D.; Fantilli, A.P. Wool-Reinforced Cement Based Composites. Materials 2020, 13, 3590. [Google Scholar] [CrossRef]
- Dewi, S.M.; Wijaya, M.N. The use of bamboo fiber in reinforced concrete beam to reduce crack. In AIP Conference Proceedings; AIP Publishing LLC.: Melville, NY, USA, 2017; p. 020003. [Google Scholar]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296-137. [Google Scholar] [CrossRef]
- Alleman, J.E.; Mossman, B.T. Asbestos Revisited. Sci. Am. 1997, 277, 70–75. [Google Scholar] [CrossRef]
- Bentur, A.; Ben-Bassat, M.; Schneider, D. Durability of Glass-Fiber-Reinforced Cements with Different Alkali-Resistant Glass Fibers. J. Am. Ceram. Soc. 1985, 68, 203–208. [Google Scholar] [CrossRef]
- Birchall, J.; Bradbury, J.; Dinwoodie, J. Strong Fibres, Handbook of Composites; North-Holland: Amsterdam, The Netherlands, 1985; Volume 1. [Google Scholar]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Giancaspro, J.W. Influence of Reinforcement Type on the Mechanical Behavior and Fire Response of Hybrid Composites and Sandwich Structures; Rutgers The State University of New Jersey-New Brunswick: New Brunswick, NJ, USA, 2004. [Google Scholar]
- Wei, B.; Cao, H.; Song, S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010, 31, 4244–4250. [Google Scholar] [CrossRef]
- Militký, J.; Kovačič, V.R.; Rubnerova, J. Influence of thermal treatment on tensile failure of basalt fibers. Eng. Fract. Mech. 2002, 69, 1025–1033. [Google Scholar] [CrossRef]
- Sun, Q.; Li, W. Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ishikawa, T. Advances in Inorganic Fibers. Polym. Inorg. Fibers 2005, 109–144. [Google Scholar] [CrossRef]
- Bernard, S.; Miele, P. Polymer-Derived Boron Nitride: A Review on the Chemistry, Shaping and Ceramic Conversion of Borazine Derivatives. Materials 2014, 7, 7436–7459. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.U.; Abutaleb, A.; Lolla, D.; Chase, G.G. Effect of Calcination Temperature on NO–CO Decomposition by Pd Catalyst Nanoparticles Supported on Alumina Nanofibers. Fibers 2017, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Wang, E.; Fang, Z.; Chen, J.; Chou, K.-C. Characterization and properties of silicon carbide fibers with self-standing membrane structure. J. Alloy. Compd. 2015, 649, 135–141. [Google Scholar] [CrossRef]
- Ragavendra, S.; Reddy, I.P.; Dongre, A. Fibre reinforced concrete-A case study. In Proceedings of the 33rd national Convention of Architectural Engineers and National Seminar on Architectural Engineering Aspect for Sustainable Building Envelopes, Hyderabad, India, November 2017. [Google Scholar]
- Chung, D.D. Carbon Composites: Composites with Carbon Fibers, Nanofibers, and Nanotubes; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- Bhatt, P.; Goe, A. Carbon Fibres: Production, Properties and Potential Use. Mater. Sci. Res. India 2017, 14, 52–57. [Google Scholar] [CrossRef]
- Bunsell, A.; Somer, A. The tensile and fatigue behaviour of carbon fibres. Plast. Rubber Compos. Process. Appl. 1992, 18, 263–267. [Google Scholar]
- Dorey, G. Carbon fibres and their applications. J. Phys. D Appl. Phys. 1987, 20, 245–256. [Google Scholar] [CrossRef]
- Pregoretti, A.; Traina, M.; Bunsell, A. Handbook of Tensile Properties of Textile and Technical Fibers; Woodhead Publishing Limited: Cambridge, UK, 2009. [Google Scholar]
- Rahaman, M.; Ismail, A.; Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 2007, 92, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T. Mesophase pitch and its carbon fibers. Pure Appl. Chem. 1985, 57, 1553–1562. [Google Scholar] [CrossRef]
- Peebles, L.H. Carbon Fibers: Formation, Structure, and Properties; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Yadav, S.P.; Singh, S. Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 2016, 80, 38–76. [Google Scholar] [CrossRef]
- Byrne, E.M.; McCarthy, M.A.; Xia, Z.; Curtin, W.A. Multiwall Nanotubes Can Be Stronger than Single Wall Nanotubes and Implications for Nanocomposite Design. Phys. Rev. Lett. 2009, 103, 045502. [Google Scholar] [CrossRef] [Green Version]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef]
- Pujari, B.S.; Gusarov, S.; Brett, M.; Kovalenko, A. Single-side-hydrogenated graphene: Density functional theory predictions. Phys. Rev. B 2011, 84, 041402. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-C.; Shiue, R.-J.; Tsai, C.-C.; Wang, W.-H.; Chen, Y.-T. High-Quality Graphene p−n Junctions via Resist-free Fabrication and Solution-Based Noncovalent Functionalization. ACS Nano 2011, 5, 2051–2059. [Google Scholar] [CrossRef]
- Böhm, S. Graphene against corrosion. Nat. Nanotechnol. 2014, 9, 741–742. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, C. Graphene fiber: A new trend in carbon fibers. Mater. Today 2015, 18, 480–492. [Google Scholar] [CrossRef]
- Ferro, G.; Tulliani, J.-M.; Musso, S. Carbon nanotubes cement composites. Frat. ed Integrita Strutt. 2011, 5, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Zhou, X.; Tang, A.; Sun, P. Mechanical Properties of Chopped Basalt Fiber-Reinforced Lightweight Aggregate Concrete and Chopped Polyacrylonitrile Fiber Reinforced Lightweight Aggregate Concrete. Materials 2020, 13, 1715. [Google Scholar] [CrossRef] [Green Version]
- Bowen, D. Fibre-reinforced ceramics. Fibre Sci. Technol. 1968, 1, 85–112. [Google Scholar] [CrossRef]
- Wong, S.-C.; Baji, A.; Leng, S. Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone). Polymer 2008, 49, 4713–4722. [Google Scholar] [CrossRef]
- Anderegg, F. Strength of glass fires. Ind. Eng. Chem. 1939, 31, 290–298. [Google Scholar] [CrossRef]
- Passuello, A.; Moriconi, G.; Shah, S.P. Cracking behavior of concrete with shrinkage reducing admixtures and PVA fibers. Cem. Concr. Compos. 2009, 31, 699–704. [Google Scholar] [CrossRef]
- Banthia, N.; Trottier, J.-F. Concrete reinforced with deformed steel fibers, part I: Bond-slip mechanisms. Materials 1994, 91, 435–446. [Google Scholar]
- Breitenbücher, R.; Meschke, G.; Song, F.; Zhan, Y. Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Struct. Concr. 2014, 15, 126–135. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Liu, J.; Fu, J.; Ni, T.; Yang, Y. Fracture toughness improvement of multi-wall carbon nanotubes/graphene sheets reinforced cement paste. Constr. Build. Mater. 2019, 200, 530–538. [Google Scholar] [CrossRef]
- Luo, J.; Chen, S.; Li, Q.; Liu, C.; Gao, S.; Zhang, J.; Guo, J. Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete. Nanomaterials 2019, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, M.; Mousavi, S.R. Investigating the effects of maximum aggregate size on self-compacting steel fiber reinforced concrete fracture parameters. Constr. Build. Mater. 2018, 162, 674–682. [Google Scholar] [CrossRef]
- Ghasemi, M.; Mousavi, S.R. Studying the fracture parameters and size effect of steel fiber-reinforced self-compacting concrete. Constr. Build. Mater. 2019, 201, 447–460. [Google Scholar] [CrossRef]
- Kumar, D.R.; Reddy, M.M. Effect of Fiber and Aggregate Size on Fracture Parameters Of High Strength Concrete. IOP Conf. Ser. Mater. Sci. Eng. 2017, 225, 12288. [Google Scholar] [CrossRef] [Green Version]
- Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R. Experimental evaluation of fiber reinforced concrete fracture properties. Compos. Part B Eng. 2010, 41, 17–24. [Google Scholar] [CrossRef]
- Su, C.; Wu, Q.; Weng, L.; Chang, X. Experimental investigation of mode I fracture features of steel fiber-reinforced reactive powder concrete using semi-circular bend test. Eng. Fract. Mech. 2019, 209, 187–199. [Google Scholar] [CrossRef]
- Xie, J.; Li, J.; Lu, Z.; Li, Z.; Fang, C.; Huang, L.; Li, L. Combination effects of rubber and silica fume on the fracture behaviour of steel-fibre recycled aggregate concrete. Constr. Build. Mater. 2019, 203, 164–173. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Chen, G.; Xie, Z. Fracture behaviors of a new steel fiber reinforced recycled aggregate concrete with crumb rubber. Constr. Build. Mater. 2014, 53, 32–39. [Google Scholar] [CrossRef]
- Cifuentes, H.; García, F.; Maeso, O.; Medina, F. Influence of the properties of polypropylene fibres on the fracture behaviour of low-, normal- and high-strength FRC. Constr. Build. Mater. 2013, 45, 130–137. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, Y.; Li, X. Uniaxial compression mechanical properties and fracture characteristics of brucite fiber reinforced cement-based composites. Compos. Struct. 2019, 212, 148–158. [Google Scholar] [CrossRef]
- Arslan, M.E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: CMOD measurement. Constr. Build. Mater. 2016, 114, 383–391. [Google Scholar] [CrossRef]
- Konsta-Gdoutos, M.S.; Gdoutos, E.E.; Danoglidis, P.A. Fracture parameters of nanoreinforced cement mortars: The effect of CNT functionalization. Strength Fract. Complex. 2018, 11, 185–194. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, C.; Wei, J. Microscopic reinforcement for cement based composite materials. Constr. Build. Mater. 2013, 40, 14–25. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, D.; Li, P.; Li, Q.; Sun, G. Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Constr. Build. Mater. 2014, 70, 332–338. [Google Scholar] [CrossRef]
- Long, N.M.; Marian, R. Investigation of fracture properties of steel fiber reinforced concrete. In Proceedings of the 3rd ACF International Conference, ACF/VCA, Ho Chi Minh City, Vietnam, 11–13 November 2008; pp. 854–861. [Google Scholar]
- Biolzi, L.; Cattaneo, S.; Guerrini, G.L. Fracture of Plain and Fiber-Reinforced High Strength Mortar Slabs with EA and ESPI Monitoring. Appl. Compos. Mater. 2000, 7, 1–12. [Google Scholar] [CrossRef]
- Enfedaque, A.; Alberti, M.G.; Gálvez, J.C. Influence of Fiber Distribution and Orientation in the Fracture Behavior of Polyolefin Fiber-Reinforced Concrete. Materials 2019, 12, 220. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M.; Enfedaque, A.; Gálvez, J. Comparison between polyolefin fibre reinforced vibrated conventional concrete and self-compacting concrete. Constr. Build. Mater. 2015, 85, 182–194. [Google Scholar] [CrossRef]
- Picazo, Á.; Alberti, M.G.; Gálvez, J.C.; Enfedaque, A.; Vega, A.C. The Size Effect on Flexural Fracture of Polyolefin Fibre-Reinforced Concrete. Appl. Sci. 2019, 9, 1762. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M.; Enfedaque, A.; Gálvez, J. On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. Constr. Build. Mater. 2014, 55, 274–288. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Monaldo, E.; Nerilli, F.; Vairo, G. Basalt-based fiber-reinforced materials and structural applications in civil engineering. Compos. Struct. 2019, 214, 246–263. [Google Scholar] [CrossRef]
- Kizilkanat, A.B. Experimental Evaluation of Mechanical Properties and Fracture Behavior of Carbon Fiber Reinforced High Strength Concrete. Period. Polytech. Civ. Eng. 2016, 60, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Merta, I.; Kopecskó, K.; Tschegg, E.K. Durability of Hemp Fibers in the Alkaline Environment of Cement Matrix. BEFIB–Fibre Reinforced Concrete; RILEM Publications SARL: Guimarães, Portugal, 2012; pp. 1–8. [Google Scholar]
- Reis, J. Fracture and flexural characterization of natural fiber-reinforced polymer concrete. Constr. Build. Mater. 2006, 20, 673–678. [Google Scholar] [CrossRef]
- Qian, C.; Stroeven, P. Fracture properties of concrete reinforced with steel–polypropylene hybrid fibres. Cem. Concr. Compos. 2000, 22, 343–351. [Google Scholar] [CrossRef]
- Lawler, J.S.; Wilhelm, T.; Zampini, D.; Shah, S.P. Fracture processes of hybrid fiber-reinforced mortar. Mater. Struct. 2003, 36, 197–208. [Google Scholar] [CrossRef]
- Pichler, C.; Lackner, R.; Mang, H.A. Multiscale Model for Creep of Shotcrete—From Logarithmic-Type Viscous Behavior of CSH at the μm-Scale to Macroscopic Tunnel Analysis. J. Adv. Concr. Technol. 2008, 6, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Banthia, N.; Nandakumar, N. Crack growth resistance of hybrid fiber reinforced cement composites. Cem. Concr. Compos. 2003, 25, 3–9. [Google Scholar] [CrossRef]
- Rasheed, M.A.; Prakash, S.S.; Raju, G.; Kawasaki, Y. Fracture studies on synthetic fiber reinforced cellular concrete using acoustic emission technique. Constr. Build. Mater. 2018, 169, 100–112. [Google Scholar] [CrossRef]
- Xie, C.; Cao, M.; Si, W.; Khan, M. Experimental evaluation on fiber distribution characteristics and mechanical properties of calcium carbonate whisker modified hybrid fibers reinforced cementitious composites. Construct. Build. Mater. 2020, 265, 120292. [Google Scholar] [CrossRef]
- Cao, P.; Feng, D.; Zhou, C.; Zuo, W. Study on fracture behavior of polypropylene fiber reinforced concrete with bending beam test and digital speckle method. Comput. Concr. 2014, 14, 527–546. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Crumbie, A.K.; Laugesen, P. The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete. Interface Sci. 2004, 12, 411–421. [Google Scholar] [CrossRef]
- Chiaia, B.; Van Mier, J.; Vervuurt, A. Crack Growth Mechanisms in Four Different Concretes: Microscopic Observations and Fractal Analysis. Cem. Concr. Res. 1998, 28, 103–114. [Google Scholar] [CrossRef]
- Kılıç, A.; Atiş, C.; Teymen, A.; Karahan, O.; Özcan, F.; Bilim, C.; Özdemir, M. The influence of aggregate type on the strength and abrasion resistance of high strength concrete. Cem. Concr. Compos. 2008, 30, 290–296. [Google Scholar] [CrossRef]
- Shanaka, K. Ductility Design of Very-High Strength Concrete Columns (100 MPa–150 MPa). Ph.D. Thesis, University of Melbourne, Melbourne, Australia, 2016. [Google Scholar]
- Şahin, Y.; Köksal, F. The influences of matrix and steel fibre tensile strengths on the fracture energy of high-strength concrete. Constr. Build. Mater. 2011, 25, 1801–1806. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Q.; Wang, Z.; Zheng, G. Fracture toughness of steel fiber reinforced high strength concrete and influencing factors. J. Chin. Ceram. Soc. 2012, 40, 638–645. [Google Scholar]
- Güneyisi, E.; Gesoglu, M.; Özturan, T.; Ipek, S. Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber. Constr. Build. Mater. 2015, 84, 156–168. [Google Scholar] [CrossRef]
- Noaman, A.T.; Abu Bakar, B.; Akil, H.M.; Alani, A. Fracture characteristics of plain and steel fibre reinforced rubberized concrete. Constr. Build. Mater. 2017, 152, 414–423. [Google Scholar] [CrossRef]
- Li, C.; Zhao, M.; Zhang, X.; Li, J.; Li, X.; Zhao, M. Effect of Steel Fiber Content on Shear Behavior of Reinforced Expanded-Shale Lightweight Concrete Beams with Stirrups. Materials 2021, 14, 1107. [Google Scholar] [CrossRef]
- Kytinou, V.K.; Chalioris, C.E.; Karayannis, C.G.; Elenas, A. Effect of steel fibers on the hysteretic performance of concrete beams with steel reinforcement—Tests and analysis. Materials 2020, 13, 2923. [Google Scholar] [CrossRef]
- Park, K.; Paulino, G.H.; Roesler, J. Cohesive fracture model for functionally graded fiber reinforced concrete. Cem. Concr. Res. 2010, 40, 956–965. [Google Scholar] [CrossRef]
- Ríos, J.D.; Leiva, C.; Ariza, M.; Seitl, S.; Cifuentes, H. Analysis of the tensile fracture properties of ultra-high-strength fiber-reinforced concrete with different types of steel fibers by X-ray tomography. Mater. Des. 2019, 165, 107582. [Google Scholar] [CrossRef]
- Schauffert, E.A.; Cusatis, G.; Pelessone, D.; O’Daniel, J.L.; Baylot, J.T. Lattice Discrete Particle Model for Fiber-Reinforced Concrete. II: Tensile Fracture and Multiaxial Loading Behavior. J. Eng. Mech. 2012, 138, 834–841. [Google Scholar] [CrossRef]
- Takahashi, R.; Watanabe, K.; Matsuki, Y.; Fujii, M.; Arai, J.M. Estimation Method of Compressive Fracture Zone Length of Ductile-Fiber-Reinforced Cementitious Composite. In Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference, Busan, Korea, 15–20 June 2014. [Google Scholar]
- Bragov, A.M.; Karihaloo, B.L.; Petrov, Y.V.; Konstantinov, A.Y.; Lamzin, D.A.; Lomunov, A.K.; Smirnov, I.V. High-rate deformation and fracture of fiber reinforced concrete. J. Appl. Mech. Tech. Phys. 2012, 53, 926–933. [Google Scholar] [CrossRef]
S/N | Keywords | Co-Occurrence | Total Link Strength |
---|---|---|---|
1 | Fracture | 845 | 5389 |
2 | Concretes | 832 | 5271 |
3 | Fracture mechanics | 555 | 3532 |
4 | Cracks | 544 | 3591 |
5 | Reinforced concrete | 489 | 3371 |
6 | Fracture toughness | 441 | 2908 |
7 | Concrete | 391 | 2468 |
8 | Fracture energy | 339 | 2375 |
9 | Mortar | 317 | 1761 |
10 | Cements | 282 | 1788 |
11 | Reinforcement | 271 | 1884 |
12 | Fibers | 270 | 2203 |
13 | Aggregates | 262 | 1878 |
14 | Brittleness | 254 | 1990 |
15 | Steel fibers | 220 | 1814 |
16 | Fiber-reinforced materials | 210 | 1767 |
17 | Concrete aggregates | 202 | 1364 |
18 | Concrete beams and girders | 199 | 1270 |
19 | Concrete construction | 168 | 954 |
20 | Crack propagation | 153 | 985 |
21 | Fracture property | 147 | 1173 |
22 | High performance concrete | 141 | 1122 |
23 | Microstructure | 131 | 768 |
24 | Concrete testing | 128 | 948 |
25 | Elastic moduli | 125 | 792 |
S/N | Author | Documents | Citations | Average Citations | Total Link Strength |
---|---|---|---|---|---|
1 | Wu Z. | 26 | 1398 | 54 | 26 |
2 | Shah S.P. | 11 | 1378 | 125 | 2 |
3 | Elices M. | 10 | 1251 | 125 | 6 |
4 | Planas J. | 10 | 1065 | 107 | 8 |
5 | Gálvez J.C. | 22 | 733 | 33 | 36 |
6 | Zhang J. | 34 | 671 | 20 | 25 |
7 | Li Q. | 28 | 550 | 20 | 18 |
8 | Schlangen E. | 20 | 515 | 26 | 20 |
9 | Keršner Z. | 14 | 468 | 33 | 0 |
10 | Enfedaque A. | 17 | 467 | 27 | 32 |
11 | Alberti M.G. | 16 | 443 | 28 | 32 |
12 | Karihaloo B.L. | 12 | 428 | 36 | 0 |
13 | Chen B. | 12 | 413 | 34 | 5 |
14 | Dong W. | 12 | 403 | 34 | 19 |
15 | Wang Y. | 21 | 367 | 17 | 13 |
16 | Li W. | 14 | 366 | 26 | 7 |
17 | Reis J.M.L. | 18 | 362 | 20 | 0 |
18 | Yu J. | 11 | 349 | 32 | 11 |
19 | Zhou X. | 11 | 347 | 32 | 11 |
20 | Hu X. | 14 | 338 | 24 | 16 |
S/N | Document | Title | Publication Year | Citations | Links | References |
---|---|---|---|---|---|---|
1 | Chen J.F. (2001) | Anchorage Strength Models for FRP and Steel Plates Bonded to Concrete | 2001 | 851 | 3 | [77] |
2 | Sim J. (2005) | Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures | 2005 | 637 | 2 | [84] |
3 | Yuan H. (2004) | Full-Range Behavior of FRP-to-Concrete Bonded Joints | 2004 | 537 | 5 | [82] |
4 | Konsta-Gdoutos M.S. (2010a) | Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials | 2010 | 521 | 2 | [10] |
5 | Wriggers P. (2006) | Mesoscale Models for Concrete: Homogenisation and Damage Behaviour | 2006 | 411 | 0 | [85] |
6 | Konsta-Gdoutos M.S. (2010b) | Multi-Scale Mechanical and Fracture Characteristics and Early-Age Strain Capacity of High Performance Carbon Nanotube/Cement Nanocomposites | 2010 | 373 | 2 | [78] |
7 | Dias D.P. (2005) | Fracture Toughness of Geopolymeric Concretes Reinforced with Basalt Fibers | 2005 | 274 | 2 | [86] |
8 | Wu Z. (2002) | Stress Transfer and Fracture Propagation in Different Kinds of Adhesive Joints | 2002 | 266 | 3 | [79] |
9 | Kang S.-T. (2010) | Tensile Fracture Properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with Steel Fiber | 2010 | 176 | 2 | [87] |
10 | Wu Z. (2016) | Effects of Steel Fiber Content and Shape on Mechanical Properties of Ultra High Performance Concrete | 2016 | 172 | 2 | [80] |
11 | Ferracuti B. (2007) | Interface Law for FRP-Concrete Delamination | 2007 | 171 | 4 | [88] |
12 | Banthia N. (2004) | Hybrid Fiber Reinforced Concrete (HyFRC): Fiber Synergy in High Strength Matrices | 2004 | 171 | 1 | [89] |
13 | Yoo D.-Y. (2013) | Effect of Fiber Content on Mechanical and Fracture Properties of Ultra High Performance Fiber Reinforced Cementitious Composites | 2013 | 155 | 3 | [90] |
14 | Xu H.H.K. (2001) | Strong and Macroporous calcium phosphate Cement: Effects of Porosity and Fiber Reinforcement on Mechanical Properties | 2001 | 141 | 0 | [91] |
15 | Kizilkanat A.B. (2015) | Mechanical Properties and Fracture Behavior of Basalt and Glass Fiber Reinforced Concrete: An Experimental Study | 2015 | 134 | 5 | [83] |
16 | Wu Z. (2003) | Fracturing Behaviors of FRP-Strengthened Concrete Structures | 2003 | 119 | 1 | [81] |
17 | Capozucca R. (2010) | Experimental FRP/SRP–Historic masonry Delamination | 2010 | 118 | 4 | [92] |
18 | Kabay N. (2014) | Abrasion Resistance and Fracture Energy of Concretes with Basalt Fiber | 2014 | 117 | 3 | [93] |
19 | Parveen S. (2015) | Microstructure and Mechanical Properties of Carbon Nanotube Reinforced Cementitious Composites Developed Using a Novel Dispersion Technique | 2015 | 114 | 2 | [94] |
20 | Zou B. (2015) | Effect of Ultrasonication Energy on Engineering Properties of Carbon Nanotube Reinforced Cement Pastes | 2015 | 111 | 2 | [95] |
S/N | Country | Documents | Citations | Total Link Strength |
---|---|---|---|---|
1 | China | 681 | 12,487 | 83,604 |
2 | United States | 417 | 12,696 | 68,248 |
3 | Italy | 134 | 3640 | 22,260 |
4 | United Kingdom | 119 | 4002 | 24,983 |
5 | Australia | 114 | 2957 | 29,224 |
6 | India | 108 | 1263 | 21,838 |
7 | Turkey | 99 | 3031 | 18,093 |
8 | Iran | 95 | 1380 | 17,696 |
9 | Spain | 91 | 3125 | 28,930 |
10 | France | 86 | 2018 | 14,584 |
11 | Japan | 78 | 2822 | 6639 |
12 | Germany | 76 | 2240 | 9233 |
13 | South Korea | 68 | 2203 | 10,590 |
14 | Hong Kong | 57 | 2651 | 13,499 |
15 | Czech Republic | 56 | 1189 | 13,474 |
16 | Brazil | 54 | 950 | 5631 |
17 | Canada | 51 | 1203 | 5564 |
18 | Portugal | 45 | 1046 | 5192 |
19 | Netherlands | 42 | 1354 | 8601 |
20 | Greece | 24 | 1472 | 3318 |
Material Category | Tensile Strength (MPa) | Ultimate Elongation (%) | Elastic Modulus (GPa) | Density (g/cm3) | ||
---|---|---|---|---|---|---|
Metallic | Steel | 345–2850 | 0.5–3.5 | 200–210 | 7.65–7.85 | |
Polymers | Synthetic | Polypropylene | 240–760 | 15–18 | 1.5–10 | 0.90–0.95 |
Polyvinyl alcohol | 800–2500 | 5.7–7.0 | 29–42 | 1.2–1.3 | ||
Polyethylene | 80–3500 | 3–100 | 5–113 | 0.92–0.97 | ||
Nylon | 440–1000 | 16–20 | 4.1–5.2 | 1.13–1.41 | ||
Polyester | 580–1100 | 35.0 | 15.0 | 1.22–1.38 | ||
Aramid | 2300–3500 | 2.0–4.5 | 63–120 | 1.38–1.47 | ||
Polyethylene terephthalate | 420–450 | 11.2 | 3.1–10 | 1.3–1.4 | ||
Acrylic | 270–1000 | 13.8–19.3 | 1.16–1.18 | |||
Natural | Palm | 21–60 | 0.6 | 1.3–1.46 | ||
Hemp | 270–900 | 1.0–3.5 | 23.5–90 | 1.4–1.5 | ||
Banana | 500 | 1.5–9 | 12.0 | 1.4 | ||
Jute | 250–350 | 1.5–1.9 | 26–32 | 1.3–1.5 | ||
Coconut | 120–200 | 25.0–10.0 | 19–26 | 0.87–1.4 | ||
Abaca | 400–980 | 1.0–10 | 6.2–20 | 1.5 | ||
kenaf | 223–930 | 1.5–2.7 | 14.5–53 | 1.4 | ||
Sisal | 280–750 | 3.0–5.0 | 13–26 | 1.34–1.45 | ||
Bagasse | 222–290 | 1.1 | 17–27 | 1.3 | ||
Wool | 160 | 3.5 | 1.3 | |||
Bamboo | 140–800 | 2.5–3.7 | 11.0–32 | 0.6–1.1 | ||
Flax fabric | 500–1500 | 50–70 | 1.5 | |||
Cotton | 390–600 | 6.0–10 | 5.8–11 | 1.5–1.6 | ||
Coir | 95–230 | 15–51.4 | 2.8–6.0 | 1.15–1.46 | ||
Inorganic | S-glass | 4020–4650 | 5.4 | 86.9 | 2.46–2.49 | |
AR-glass | 3240 | 4.4 | 73 | 2.7 | ||
C-glass | 3310 | 4.8 | 69 | 2.6 | ||
E-glass | 3100–3800 | 4.8 | 72.4 | 2.5–2.62 | ||
Basalt | 3000–4840 | 3.0–3.15 | 89–110 | 2.65–2.80 | ||
Boron nitride | 2100 | 345 | 7.65–7.85 | |||
Alumina | 1700–2000 | 0.4 | 300–380 | 3.3–3.95 | ||
Silicon nitride | 2500–4800 | 195–300 | ||||
Asbestos | 620 | 160 | 2.55 | |||
Silicon carbide | 2200–3450 | 221–250 | 2.5–2.7 | |||
Alumina-silica | 1590–2550 | 0.8–1.0 | 200–248 | 3.4 | ||
Carbon fibers | Carbon nanotube | 11000–63000 | 1000–1800 | |||
Rayon | 500–1500 | 2.5 | 35–60 | 1.4–1.7 | ||
Polyacrylonitrile | 2500–7000 | 0.6–2.5 | 250–500 | 1.8–1.9 | ||
Mesophase pitch | 1500–3500 | 0.3–0.9 | 200–900 | 1.6–2.2 | ||
Graphene | 130000 | 1000 |
Fiber Type | Matrix | Researcher |
---|---|---|
Multiwall carbon nanotubes | Cement Mortar | Gdoutos et al. [9] |
Multiwall carbon nanotubes and graphene sheets | Cement Paste | Liu et al. [194] |
Graphene oxide | Recycled aggregate concrete | Luo et al. [195] |
Hooked-end steel fiber | Self-compacting concrete | Ghasemi et al. [196,197] |
Hooked-end steel fiber | High-strength concrete | Kazemi et al. [34] |
Hooked-end steel fiber | High-strength concrete | Kumar et al. [198] |
Steel and polypropylene (PP) fibers | Concrete | Bencardino et al. [199] |
Copper-plating steel fibers | Reactive powder concrete | Su et al. [200] |
Sheet-wave type steel fiber | Recycled aggregate concrete | Xie et al. [201] |
Steel fiber | Recycled aggregate concrete | Guo et al. [202] |
Polypropylene fiber | High-strength concrete | Cifuentes et al. [203] |
Brucite fiber | Cement Paste | Yang et al. [204] |
Basalt and glass fibers | Concrete | Arslan [205] |
Basalt and polypropylene hybrid fibers | High-performance concrete | Smarzewski [28] |
Multiwall carbon nanotubes and polyvinyl alcohol-steel hybrid fibers | Ultra-high-toughness cementitious composites | Xu et al. [11] |
Calcium carbonate whisker and polyvinyl alcohol-steel hybrid fibers | Cement mortar | Cao et al. [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, W.; Khan, M.; Smarzewski, P. Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach. Materials 2021, 14, 1745. https://doi.org/10.3390/ma14071745
Ahmad W, Khan M, Smarzewski P. Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach. Materials. 2021; 14(7):1745. https://doi.org/10.3390/ma14071745
Chicago/Turabian StyleAhmad, Waqas, Mehran Khan, and Piotr Smarzewski. 2021. "Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach" Materials 14, no. 7: 1745. https://doi.org/10.3390/ma14071745
APA StyleAhmad, W., Khan, M., & Smarzewski, P. (2021). Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach. Materials, 14(7), 1745. https://doi.org/10.3390/ma14071745