Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects
Abstract
:1. Introduction
2. Overview of the Imprinting Process
3. Molecularly or Ion Imprinted Sorbents for Solid Phase Extraction—Synthesis Approaches and Characterization
3.1. Bulk, Monoliths, and Mesoporous Imprinted Sorbents
3.2. Microspheres and Core-Shell Imprinted Sorbents
3.3. Magnetic Susceptible and Stir-Bar Imprinted Conjugates
3.4. Miscellaneous
4. Molecularly Imprinted Sorbents for Enantio-Separation
5. Application Potential of Imprinted Sorbents
6. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Augusto, F.; Hantao, L.W.; Mogollon, N.G.S.; Braga, S.C.G.N. New materials and trends in sorbents for solid-phase extraction. Trends Anal. Chem. 2013, 43, 14–23. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepanska, N.; de la Guardia, M.; Namiesnik, J. Modern trends in solid phase extraction: New sorbent media. Trends Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Marć, M.; Szczepańska, N.; Namieśnik, J. New Polymeric Materials for Solid Phase Extraction. Crit. Rev. Anal. Chem. 2017, 47, 373–383. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review (Part I). Trends Anal. Chem. 2016, 80, 641–654. [Google Scholar] [CrossRef]
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-phase extraction of organic compounds: A critical review (Part II). Trends Anal. Chem. 2016, 80, 655–667. [Google Scholar] [CrossRef]
- Ścigalski, P.; Kosobucki, P. Recent materials developed for dispersive solid phase extraction. Molecules 2020, 25, 4869. [Google Scholar] [CrossRef]
- Godage, N.H.; Gionfriddo, E. Use of natural sorbents as alternative and green extractive materials: A critical review. Anal. Chim. Acta 2020, 1125, 187–200. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lorenzo, C.; Concheiro, A. Handbook of Molecularly Imprinted Polymers; Smithers Rapra: Shawbury, UK, 2013. [Google Scholar]
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and application. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef]
- Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628. [Google Scholar] [CrossRef]
- Cui, B.; Liu, P.; Liu, X.; Liu, S.; Zhang, Z. Molecularly imprinted polymers for electrochemical detection and analysis: Progress and perspectives. J. Mater. Res. Technol. 2020, 9, 12568–12584. [Google Scholar] [CrossRef]
- Yarman, A.; Kurbanoglu, S.; Zebger, I.; Scheller, F.W. Simple and robust: The claims of protein sensing by molecularly imprinted polymers. Sens. Actuators B 2021, 330, 129369. [Google Scholar] [CrossRef]
- Dar, K.K.; Shao, S.; Tan, T.; Lv, Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnol. Adv. 2020, 45, 107640. [Google Scholar] [CrossRef] [PubMed]
- Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A.M.; Piletsky, S. Molecularly imprinted polymers for cell recognition. Trends Biotechnol. 2020, 38, 368–387. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P. Molecularly imprinted polymers based drug delivery devices: A way to application in modern pharmacotherapy. A review. Mater. Sci. Eng. C 2017, 76, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Muratsugu, S.; Shirai, S.; Tada, M. Recent progress in molecularly imprinted approach for catalysis. Tetrahedron Lett. 2020, 61, 151603. [Google Scholar] [CrossRef]
- Shakerian, F.; Kim, K.-H.; Kwon, E.; Szulejko, J.E.; Kumar, P.; Dadfarnia, S.; Shabani, A.M.H. Advanced polymeric materials: Synthesis and analytical application of ion imprinted polymers as selective sorbents for solid phase extraction of metal ions. Trends Anal. Chem. 2016, 83, 55–69. [Google Scholar] [CrossRef]
- Karlsson, B.C.G.; O’Mahony, J.; Karlsson, J.G.; Bengtsson, H.; Eriksson, L.A.; Nicholls, I.A. Structure and dynamics of monomer-template complexation: An explanation for molecularly imprinted polymer recognition site heterogeneity. J. Am. Chem. Soc. 2009, 131, 13297–13304. [Google Scholar] [CrossRef]
- Olsson, G.D.; Karlsson, B.C.G.; Shoravi, S.; Wiklander, J.G.; Nicholls, I.A. Mechanisms underlying molecularly imprinted polymer molecular memory and the role of crosslinker: Resolving debate on the nature of template recognition in phenylalanine anilide imprinted polymers. J. Mol. Recognit. 2012, 25, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.D.; Wilson, T.D.; Wilson, I.D.; Jones, G.R. An unexpected selectivity of a propranolol-derived molecular imprint for tamoxifen. Analyst 2001, 126, 757–759. [Google Scholar] [CrossRef]
- Klejn, D.; Luliński, P.; Maciejewska, D. Molecularly imprinted solid phase extraction in an efficient analytical protocol for indole-3-methanol determination in artificial gastric juice. RSC Adv. 2016, 6, 108801–108809. [Google Scholar] [CrossRef]
- Cowen, T.; Karim, K.; Piletsky, S. Computational approaches in the design of synthetic receptors—A review. Anal. Chim. Acta 2016, 936, 62–74. [Google Scholar] [CrossRef]
- Piletsky, S.A.; Karim, K.; Piletska, E.V.; Day, C.; Freebairn, K.W.; Legge, C.; Turner, A.P.F. Recognition of ephedrine enantiomers by MIPs designed using a computational approach. Analyst 2001, 126, 1826–1830. [Google Scholar] [CrossRef]
- Karim, K.; Cowen, T.; Guerreiro, A.; Piletska, E.; Whitcombe, M.J.; Piletsky, S.A. A protocol for the computational design of high affinity molecularly imprinted polymer synthetic receptors. Glob. J. Biotechnol. Biomater. Sci. 2017, 3, 001–007. [Google Scholar] [CrossRef] [Green Version]
- Moro, G.; Bottari, F.; Sleegers, N.; Florea, A.; Cowen, T.; Moretto, L.M.; Piletsky, S.; De Wael, K. Conductive imprinted polymers for the direct electrochemical detection of β-lactam antibiotics: The case of cefquinome. Sens. Actuators B 2019, 297, 126786. [Google Scholar] [CrossRef]
- Luliński, P.; Maciejewska, D.; Bamburowicz-Klimkowska, M.; Szutowski, M. Dopamine-imprinted polymers: Template-monomer interactions, analysis of template removal and application to solid phase extraction. Molecules 2007, 12, 2434–2449. [Google Scholar] [CrossRef]
- Mamo, S.K.; Elie, M.; Baron, M.G.; Gonzalez-Rodriguez, J. Computationally designed perrhenate ion imprinted polymers for selective trapping of rhenium ions. ACS Appl. Polym. Mater. 2020, 2, 3135–3147. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.; Li, Y.; Jin, P.; Qin, W.; Qi, J. Effective removal of rhodamine B from contaminated water using non-covalent imprinted microspheres designed by computational approach. Biosens. Bioelectron. 2009, 25, 629–634. [Google Scholar] [CrossRef]
- Janczura, M.; Sobiech, M.; Luliński, P. Insight into the morphology, pore structure and sorption properties of 4-hydroxy-3-nitrophenylacetic acid imprinted poly(acrylic acid-co-ethylene glycol dimethacrylate) sorbent. Polym. Test. 2021, 93, 106983. [Google Scholar] [CrossRef]
- Golker, K.; Karlsson, B.C.G.; Wiklander, J.G.; Rosengren, A.M.; Nicholls, I.A. Hydrogen bond diversity in the pre-polymerization stage contributes to morphology and MIP-template recognition—MAA versus MMA. Eur. Polym. J. 2015, 66, 558–568. [Google Scholar]
- Golker, K.; Nicholls, I.A. The effect of crosslinking density on molecularly imprinted polymer morphology and recognition. Eur. Polym. J. 2016, 75, 423–430. [Google Scholar] [CrossRef]
- Golker, K.; Olsson, G.D.; Nicholls, I.A. The influence of a methyl substituent on molecularly imprinted polymer morphology and recognition—Acrylic acid versus methacrylic acid. Eur. Polym. J. 2017, 92, 137–149. [Google Scholar] [CrossRef]
- Shoravi, S.; Olsson, G.D.; Karlsson, B.C.G.; Nicholls, I.A. On the influence of crosslinker on template complexation in molecularly imprinted polymers: A computational study of prepolymerization mixture events with correlations to template-polymer recognition behavior and NMR spectroscopic studies. Int. J. Mol. Sci. 2014, 15, 10622–10634. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, N.A.; Paisner, D.A.; Huryn, D.; Shea, K.J. Screening of 5-HT1A receptor antagonists using molecularly imprinted polymers. J. Am. Chem. Soc. 2007, 129, 1680–1689. [Google Scholar] [CrossRef] [Green Version]
- Żołek, T.; Luliński, P.; Maciejewska, D. A computational model for selectivity evaluation of 2-(3,4-dimethoxyphenyl)ethylamine (homoveratrylamine) imprinted polymers towards biogenic compounds. Anal. Chim. Acta 2011, 693, 121–129. [Google Scholar] [CrossRef]
- Sobiech, M.; Żołek, T.; Luliński, P.; Maciejewska, D. A computational exploration of imprinted polymer affinity based on voriconazole metabolites. Analyst 2014, 139, 1779–1788. [Google Scholar] [CrossRef]
- Luliński, P.; Sobiech, M.; Żołek, T.; Maciejewska, D. A separation of tyramine on a 2-(4-methoxyphenyl)ethylamine imprinted polymer: An answer from theoretical and experimental studies. Talanta 2014, 129, 155–164. [Google Scholar] [CrossRef]
- Sobiech, M.; Żołek, T.; Luliński, P.; Maciejewska, D. Separation of octopamine racemate on (R,S)-2-amino-1-phenylethanol imprinted polymer—Experimental and computational studies. Talanta 2016, 146, 556–567. [Google Scholar] [CrossRef]
- Giebułtowicz, J.; Sobiech, M.; Rużycka, M.; Luliński, P. Theoretical and experimental approach to hydrophilic interactiondispersive solid-phase extraction of 2-aminothiazoline-4-carboxylicacid from human post-mortem blood. J. Chromatogr. A 2019, 1587, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Woźnica, M.; Sobiech, M.; Pałka, N.; Luliński, P. Monitoring the role of enantiomers in the surface modification and adsorption process of polymers imprinted by chiral molecules: Theory and practice. J. Mater. Sci. 2020, 55, 10626–10642. [Google Scholar] [CrossRef]
- Sobiech, M.; Giebułtowicz, J.; Luliński, P. Theoretical and experimental proof for selective response of imprinted sorbent—analysis of hordenine in human urine. J. Chromatogr. A 2020, 1613, 460677. [Google Scholar] [CrossRef]
- Pavel, D.; Lagowski, J. Computationally designed monomers and polymers for molecular imprinting of theophylline and its derivatives. Part I, Polymer 2005, 46, 7528–7542. [Google Scholar] [CrossRef]
- Pavel, D.; Lagowski, J. Computationally designed monomers and polymers for molecular imprinting of theophylline—Part II. Polymer 2005, 46, 7543–7556. [Google Scholar] [CrossRef]
- Pavel, D.; Lagowski, J.; Lepage, C.J. Computationally designed monomers for molecular imprinting of chemical warfare agents—Part V. Polymer 2006, 47, 8389–8399. [Google Scholar] [CrossRef]
- Huynh, T.P.; Wojnarowicz, A.; Sosnowska, M.; Srebrnik, S.; Benincori, T.; Sannicolò, F.; D’Souza, F.; Kutner, W. Cytosine derivatized bis(2,2′-bithienyl)methane molecularly imprinted polymer for selective recognition of 6-thioguanine, an antitumor drug. Biosens. Bioelectron. 2015, 70, 153–160. [Google Scholar] [CrossRef]
- Schauperl, M.; Lewis, D.W. Probing the structural and binding mechanism heterogeneity of molecularly imprinted polymers. J. Phys. Chem. B 2015, 119, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Cowen, T.; Busato, M.; Karim, K.; Piletsky, S.A. In silico synthesis of synthetic receptors: A polymerization algorithm. Macromol. Rapid Commun. 2016, 37, 2011–2016. [Google Scholar] [CrossRef]
- Wong, A.; Midori de Oliveira, F.; Teixeira Tarley, C.R.; Del Pilar Taboada Sotomayor, M. Study on the cross-linked molecularly imprinted poly(methacrylic acid) and poly(acrylic acid) towards selective adsorption of diuron. React. Funct. Polym. 2016, 100, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Ang, Q.Y.; Low, S.C. Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine. Anal. Bioanal. Chem. 2015, 407, 6747–6758. [Google Scholar] [CrossRef]
- Panahi, R.; Vasheghani-Farahani, E.; Shojosadati, S.A. Determination of adsorption isotherm for L-lysine imprinted polymer. Iran. J. Chem. Eng. 2008, 5, 49–55. [Google Scholar]
- Balarak, D.; Mostafapour, F.K.; Azarpira, H.; Joghataei, A. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles. Int. J. Pharm. Res. 2017, 20, 1–9. [Google Scholar] [CrossRef]
- Inyinbor, A.A.; Adekola, F.A.; Olatunji, G.A. Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour. Ind. 2016, 15, 14. [Google Scholar]
- Baggiani, C.; Giraudi, G.; Giovannoli, C.; Tozzi, C.; Anfossi, L. Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template. Indirect evidence of the formation of template clusters in the binding site. Anal. Chim. Acta 2004, 504, 43–52. [Google Scholar] [CrossRef]
- Asman, S.; Mohamad, S.; Sarih, N.M. Influence of polymer morphology on the adsorption behaviors of molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin. J. Appl. Polym. Sci. 2015, 132, 42720. [Google Scholar] [CrossRef]
- Pesavento, M.; Marchetti, S.; De Maria, L.; Zeni, L.; Cennamo, N. Sensing by molecularly imprinted polymer: Evaluation of the binding properties with different techniques. Sensors 2019, 19, 1344. [Google Scholar] [CrossRef] [Green Version]
- Turiel, E.; Perez-Conde, C.; Martin-Esteban, A. Assessment of the cross-reactivity and binding sites characterisation of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm. Analyst 2003, 128, 137–141. [Google Scholar] [CrossRef]
- Karim, K.; Breton, F.; Rouillon, R.; Piletska, E.V.; Guerreiro, A.; Chianella, I.; Piletsky, S.A. How to find effective functional monomers for effective molecularly imprinted polymers? Adv. Drug Deliv. Rev. 2005, 57, 1795–1808. [Google Scholar] [CrossRef]
- Li, Q.; Ling, B.; Jiang, L.; Ye, L. A paradigm shift design of functional monomers for developing molecularly imprinted polymers. Chem. Eng. J. 2018, 350, 217–224. [Google Scholar] [CrossRef]
- Liu, H.; Jin, P.; Zhu, F.; Nie, L.; Qiu, H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Anal. Chim. 2021, 134, 116132. [Google Scholar] [CrossRef]
- Beyazit, S.; Tse Sum Bui, B.; Haupt, K.; Gonzato, C. Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog. Polym. Sci. 2016, 62, 1–21. [Google Scholar] [CrossRef]
- Kempe, H.; Pujolràs, A.P.; Kempe, M. Molecularly imprinted polymer nanocarriers for sustained release of erythromycin. Pharm. Res. 2015, 32, 375–388. [Google Scholar] [CrossRef]
- Marć, M.; Panuszko, A.; Namieśnik, J.; Wieczorek, P.P. Preparation and characterization of dummy-template molecularly imprinted polymers as potential sorbents for the recognition of selected polybrominated diphenyl ethers. Anal. Chim. Acta 2018, 1030, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, F.; Wang, X.-H.; Xu, D.; Huang, Y.-P.; Liu, Z.-S. Preparation and characterization of dual-template molecularly imprinted monolith with metal ion as pivot. Eur. Polym. J. 2016, 80, 134–144. [Google Scholar] [CrossRef]
- Sorribes-Soriano, A.; Arráez-González, R.; Esteve-Turrillas, F.A.; Armenta, S.; Herrero-Martínez, J.M. Development of a molecularly imprinted monolithic polymer disk for agitation-extraction of ecgonine methyl ester from environmental water. Talanta 2019, 199, 388–395. [Google Scholar] [CrossRef]
- Sorribes-Soriano, A.; Valencia, A.; Esteve-Turrillas, F.A.; Armenta, S.; Herrero-Martínez, J.M. Development of pipette tip-based poly(methacrylic acid-co-ethylene glycol dimethacrylate) monolith for the extraction of drugs of abuse from oral fluid samples. Talanta 2019, 205, 120158. [Google Scholar] [CrossRef] [PubMed]
- Rui, C.; He, J.; Li, Y.; Liang, Y.; You, L.; He, L.; Li, K.; Zhang, S. Selective extraction and enrichment of aflatoxins from food samples by mesoporous silica FDU-12 supported aflatoxins imprinted polymers based on surface molecularly imprinting technique. Talanta 2019, 201, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, L.; Wang, H.; Guo, L.; Zhai, Y.; Zhang, J.; Yang, Y.; Wang, H.; Yin, Z.; Lu, Y. Preparation of molecularly imprinted ordered mesoporous silica for rapid and selective separation of trace bisphenol A from water samples. Appl. Surf. Sci. 2018, 448, 380–388. [Google Scholar] [CrossRef]
- Xu, Z.; Deng, P.; Li, J.; Tang, S.; Cui, Y. Modification of mesoporous silica with molecular imprinting technology: A facile strategy for achieving rapid and specific adsorption. Mater. Sci. Eng. C 2019, 94, 684–693. [Google Scholar] [CrossRef]
- Neolaka, Y.A.B.; Lawa, Y.; Naat, J.N.; Pau Riwu, A.A.; Darmokoesoemo, H.; Supriyanto, G.; Holdsworth, C.I.; Amenaghawon, A.N.; Kusuma, H.S. A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater. Rect. Funct. Polym. 2020, 147, 104451. [Google Scholar] [CrossRef]
- Zeng, H.; Yu, X.; Wan, J.; Cao, X. Rational design and synthesis of molecularly imprinted polymers (MIP) for purifying tylosin by seeded precipitation polymerization. Process Biochem. 2020, 94, 329–339. [Google Scholar] [CrossRef]
- Pourfarzib, M.; Shekarchi, M.; Rastegar, H.; Akbari-Adergani, B.; Mehramizi, A.; Dinarvand, R. Molecularly imprinted nanoparticles prepared by miniemulsion polymerization as a sorbent for selective extraction and purification of efavirenz from human serum and urine. J. Chromatogr. B 2015, 974, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, X.; Wang, M.; Wang, Y.; Wu, Q.; Ji, L.; Li, Q.; Yang, J.; Zhou, Q. Dummy molecularly imprinted microspheres prepared by Pickering emulsion polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples. J. Chromatogr. A 2020, 1620, 461013. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Wang, J.; Sun, X.; Cao, R.; Sun, H.; Huang, C.; Chen, J. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Anal. Chim. Acta 2015, 872, 35–45. [Google Scholar] [CrossRef]
- Cao, J.; Shen, C.; Wang, X.; Zhu, Y.; Bao, S.; Wu, X.; Fu, Y. A porous cellulose-based molecular imprinted polymer for specific recognition and enrichment of resveratrol. Carbohydr. Polym. 2021, 251, 117026. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qiu, T.; Guo, L.; Ye, J.; He, L.; Li, X. Polymerization induced shaping of Pickering emulsion droplets: From simple hollow microspheres to molecularly imprinted multicore microrattles. Chem. Eng. J. 2018, 332, 409–418. [Google Scholar] [CrossRef]
- Negarian, M.; Mohammadinejad, A.; Mohajeri, S.A. Preparation, evaluation and application of core–shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk. Food Chem. 2019, 288, 29–38. [Google Scholar] [CrossRef]
- Qian, L.; Liu, W.; Yang, M.; Nica, V.; Yang, J.; Liu, H.; Ning, L.; Zhang, S.; Zhang, Q. Zwitterionic polymer chain-assisted lysozyme imprinted core-shell carbon microspheres with enhanced recognition and selectivity. Talanta 2020, 217, 121085. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, I.; Berhanu, A.L.; Malik, A.K.; Aulakh, J.S.; Lee, J.; Kim, K.-H. Preparation and evaluation of a porous molecularly imprinted polymer for selective recognition of the antiepileptic drug carbamazepine. Environ. Res. 2019, 176, 108580. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, J.; Zhu, L.; Tan, L.; Feng, G.; Liu, S.; Dai, Y.; Wang, H. Preparation of molecularly imprinted polymers using theanine as dummy template and its application as SPE sorbent for the determination of eighteen amino acids in tobacco. Talanta 2016, 150, 388–398. [Google Scholar] [CrossRef]
- Wu, Y.; Xing, W.; Meng, M.; Lu, J.; Ma, F.; Gao, J.; Lin, X.; Yu, C. Multiple-functional molecularly imprinted nanocomposite membranes for high-efficiency selective separation applications: An imitated core-shell TiO2@PDA-based MIMs design. Compos. B Eng. 2020, 198, 108123. [Google Scholar] [CrossRef]
- Guo, B.; Tong, Y.; Zhang, B.; Tian, M. Double affinity based molecularly imprinted polymers for selective extraction of luteolin: A combination of synergistic metal chelating and boronate affinity. Microchem. J. 2021, 160, 105670. [Google Scholar] [CrossRef]
- Wei, Z.-H.; Zhang, R.-R.; Mu, L.-N.; Huang, Y.-P.; Liu, Z.-S. Fabrication of core-shell sol-gel hybrid molecularly imprinted polymer based on metal–organic framework. Eur. Polym. J. 2019, 121, 109301. [Google Scholar] [CrossRef]
- Sobiech, M.; Giebułtowicz, J.; Luliński, P. Application of magnetic core-shell imprinted nanoconjugates for the analysis of hordenine in human plasma-preliminary data on pharmacokinetic study after oral administration. J. Agric. Food Chem. 2020, 68, 14502–14512. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, J.; Jiang, Y.; Liu, Z.; Meng, M.; Ni, L.; Qin, C.; Peng, J. Selective Ce(III) ion-imprinted polymer grafted on Fe3O4 nanoparticles supported by SBA-15 mesopores microreactor via surface-initiated RAFT polymerization. Mesoporous Microporous Mat. 2016, 234, 176–185. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, D.; Li, Q.; Chen, W.; Li, Q.; Zhang, Q.; Liang, N. Dummy-surface molecularly imprinted polymers based on magnetic graphene oxide for selective extraction and quantification of pyrethroids pesticides in fruit juices. Microchem. J. 2020, 159, 105411. [Google Scholar] [CrossRef]
- Li, F.; Gao, J.; Li, X.X.; Li, Y.; He, X.; Chen, L.; Zhang, Y. Preparation of magnetic molecularly imprinted polymers functionalized carbon nanotubes for highly selective removal of aristolochic acid. J. Chromatogr. A 2019, 1602, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Ma, Y.; Liu, J.; Liu, S.; Pan, J. Janus-like boronate affinity magnetic molecularly imprinted nanobottles for specific adsorption and fast separation of luteolin. Chem. Eng. J. 2019, 356, 436–444. [Google Scholar] [CrossRef]
- Villar-Navarro, M.; Martin-Valero, M.J.; Fernandez-Torres, R.M.; Callejon-Mochon, M.; Bello-Lopez, M.A. Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs). J. Chromatogr. B 2017, 1044–1045, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Alvarez, M.; Turiel, E.; Martin-Esteban, A. Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of triazines from environmental soil samples. J. Chromatogr. A 2016, 1469, 1–7. [Google Scholar] [CrossRef]
- Ansari, S.; Karimi, M. Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysi. Talanta 2017, 167, 470–485. [Google Scholar] [CrossRef]
- Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Anal. Chem. 2019, 114, 202–217. [Google Scholar] [CrossRef]
- Ansari, S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends. Trends Anal. Chem. 2017, 90, 89–106. [Google Scholar] [CrossRef]
- De Middeleer, G.; Dubruel, P.; De Saeger, S. Molecularly imprinted polymers immobilized on 3D printed scaffolds as novel solid phase extraction sorbent for metergoline. Anal. Chim. Acta 2017, 986, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Demirkurt, M.; Olcer, Y.A.; Demir, M.M.; Eroglu, A.E. Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Anal. Chim. Acta 2018, 1014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhou, L.; Tang, X.; Xi, J.; Ouyang, J.; Liu, Z.; Huang, G.; Adesina, A.A. Macroporous ion-imprinted chitosan foams for the selective biosorption of U(VI) from aqueous solution. Int. J. Biol. Macromol. 2020, 164, 4155–4164. [Google Scholar] [CrossRef] [PubMed]
- Moein, M.M. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2021, 224, 121794. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, X.; Zhang, Z.; Yin, J.; Wang, D.; Xu, Y.; Zheng, W.; Li, X.; Zhang, Q.; Liu, L. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta 2020, 208, 120385. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, Z.; Liu, Y.; Liu, Y.; Li, G.; Si, X.; Lin, T.; Liu, H.; Liu, Z. Molecularly imprinted polymer-based fiber array extraction of eight estrogens from environmental water samples prior to high-performance liquid chromatography analysis. Microchem. J. 2020, 159, 105376. [Google Scholar] [CrossRef]
- Urucu, O.A.; Cigil, A.B.; Birtane, H.; Yetimoglu, E.K.; Kahraman, M.V. Selective molecularly imprinted polymer for the analysis of chlorpyrifos in water samples. J. Ind. Eng. Chem. 2020, 87, 145–151. [Google Scholar] [CrossRef]
- Lu, Y.C.; Mao, J.H.; Zhang, W.; Wang, C.; Cao, M.; Wang, X.D.; Wang, K.Y.; Xiong, X.H. A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano−polymers. Chemosphere 2020, 238, 124640. [Google Scholar] [CrossRef]
- Hijazi, H.Y.; Bottaro, C.S. Molecularly imprinted polymer thin-film as a micro-extraction adsorbent for selective determination of trace concentrations of polycyclic aromatic sulfur heterocycles in seawater. J. Chromatogr. A 2020, 1617, 460824. [Google Scholar] [CrossRef]
- Cui, Y.; Kang, W.; Qin, L.; Ma, J.; Liu, X.; Yang, Y. Magnetic surface molecularly imprinted polymer for selective adsorption of quinoline from coking wastewater. Chem. Eng. J. 2020, 397, 125480. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, L.; Cui, Y.; Liu, W.-F.; Liu, X.-G.; Yang, Y.-Z. A hydrophilic surface molecularly imprinted polymer on a spherical porous carbon support for selective phenol removal from coking wastewater. New Carbon Mater. 2020, 35, 220–231. [Google Scholar] [CrossRef]
- Fang, L.; Miao, Y.; Wei, D.; Zhang, Y.; Zhou, Y. Efficient removal of norfloxacin in water using magnetic molecularly imprinted polymer. Chemosphere 2021, 262, 128032. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, W.; Wang, P.; Cheng, G.; Chen, L.; Zhang, K.; Li, X. One-step polymerization of hydrophilic ionic liquid imprinted polymer in water for selective separation and detection of levofloxacin from environmental matrices. J. Sep. Sci. 2020, 43, 639–647. [Google Scholar] [CrossRef]
- Li, T.; Li, X.; Liu, H.; Deng, Z.; Zhang, Y.; Zhang, Z.; He, Y.; Yang, Y.; Zhong, S. Preparation and characterization of molecularly imprinted polymers based on β-cyclodextrin-stabilized Pickering emulsion polymerization for selective recognition of erythromycin from river water and milk. J. Sep. Sci. 2020, 43, 3683–3690. [Google Scholar] [CrossRef]
- Czarny, K.; Szczukocki, D.; Krawczyk, B.; Juszczak, R.; Skrzypek, S.; Gadzała-Kopciuch, R. Molecularly imprinted polymer film grafted from porous silica for efficient enrichment of steroid hormones in water samples. J. Sep. Sci. 2019, 42, 2858–2866. [Google Scholar] [CrossRef] [PubMed]
- de León-Martínez, L.D.; Rodríguez-Aguilar, M.; Ocampo-Pérez, R.; Gutiérrez Hernández, J.M.; Díaz-Barriga, F.; Batres-Esquivel, L.; Flores-Ramírez, R. Synthesis and evaluation of a molecularly imprinted polymer for the determination of metronidazole in water samples. Bull. Environ. Contam. Toxicol. 2018, 100, 395–401. [Google Scholar] [CrossRef]
- da Silva, W.A.; Feiteira, F.N.; Francisco, J.E.; Toloza, C.A.T.; Aucélio, R.Q.; Pacheco, W.F. Pre-concentration of rosuvastatin using solid-phase extraction in a molecularly imprinted polymer and analytical application in water supply. Environ. Sci. Pollut. Res. 2020, 27, 11724–11735. [Google Scholar] [CrossRef]
- Dai, C.-M.; Zhang, J.; Zhang, Y.-L.; Zhou, X.-F.; Duan, Y.-P.; Liu, S.-G. Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers. Environ. Sci. Pollut. Res. 2013, 20, 5492–5501. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Gao, B.; Xu, Y.; Zhao, Q.; Hou, J.; Yan, J.; Li, G.; Wang, H.; Ding, L.; et al. Fast determination of sulfonamides and their acetylated metabolites from environmental water based on magnetic molecularly imprinted polymers. Environ. Sci. Pollut. Res. 2013, 20, 8567–8578. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Tan, L. Highly selective separation and detection of cyromazine from seawater using graphene oxide based molecularly imprinted solid-phase extraction. J. Sep. Sci. 2019, 42, 2100–2106. [Google Scholar] [CrossRef]
- Herrero-Hernandez, E.; Rodriguez-Gonzalo, E.; Rodriguez-Cruz, M.S.; Carabias-Martinez, R.; Sanchez-Martin, M.J. Efficiency of a molecularly imprinted polymer for selective removal of phenols and phenoxyacids from contaminated waters. Int. J. Environ. Sci. Technol. 2015, 12, 3079–3088. [Google Scholar] [CrossRef] [Green Version]
- Deng, D.; He, Y.; Li, M.; Huang, L.; Zhang, J. Preparation of multi-walled carbon nanotubes based magnetic multi-template molecularly imprinted polymer for the adsorption of phthalate esters in water samples. Environ. Sci. Pollut. Res. 2021, 28, 5966–5977. [Google Scholar] [CrossRef]
- Mbhele, Z.E.; Ncube, S.; Madikizela, L.M. Synthesis of a molecularly imprinted polymer and its application in selective extraction of fenoprofen from wastewater. Environ. Sci. Pollut. Res. 2018, 25, 36724–36735. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.W.; Wu, Y.J.; Qu, J.R.; Yang, H. Preparation and utilization of molecularly imprinted polymer for chlorsulfuron extraction from water, soil, and wheat plant. Environ. Monit. Assess. 2012, 184, 4161–4170. [Google Scholar] [CrossRef] [PubMed]
- Francisco, J.E.; Feiteira, F.N.; da Silva, W.A.; Pacheco, W.F. Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples. Environ. Sci. Pollut. Res. 2019, 26, 19588–19597. [Google Scholar] [CrossRef]
- Khajeh, M.; Sanchooli, E. Imprinted polymer particles for preconcentration of copper from water and biological samples. Environ. Chem. Lett. 2011, 9, 177–183. [Google Scholar] [CrossRef]
- Yuan, X.; Yuan, Y.; Gao, X.; Xiong, Z.; Zhao, L. Magnetic dummy-template molecularly imprinted polymers based on multiwalled carbon nanotubes for simultaneous selective extraction and analysis of phenoxy carboxylic acid herbicides in cereals. Food Chem. 2020, 330, 127540. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.; Zhang, C.; Wu, M.; Feng, S. Preparation of porous magnetic molecularly imprinted polymers for fast and specifically extracting trace norfloxacin residue in pork liver. J. Sep. Sci. 2020, 43, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Fu, J.; Li, Z.; Zeng, Y.; Li, Y.; Su, X.; Jiang, X.; Yang, H.; Huang, L.; Zou, L.; et al. Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples. J. Chromatogr. A 2019, 1602, 124–134. [Google Scholar] [CrossRef]
- Ma, N.; Feng, C.; Qu, P.; Wang, G.; Liu, J.; Liu, X.J.; Wang, J.P. Determination of tetracyclines in chicken by dispersive solid phase microextraction based on metal-organic frameworks/molecularly imprinted nano-polymer and ultraperformance liquid chromatography. Food Anal. Methods 2020, 13, 1211–1219. [Google Scholar] [CrossRef]
- Moreno-González, D.; Hamed, A.M.; García-Campana, A.M.; Gámiz-Gracia, L. Evaluation of hydrophilic interaction liquid chromatography–tandem mass spectrometry and extraction with molecularly imprinted polymers for determination of aminoglycosides in milk and milk-based functional foods. Talanta 2017, 171, 74–80. [Google Scholar] [CrossRef]
- Li, Z.; Lei, C.; Wang, N.; Jiang, X.; Zeng, Y.; Fu, Z.; Zou, L.; He, L.; Liu, S.; Ao, X.; et al. Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food. J. Chromatogr. B 2018, 1100–1101, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, D.; Peng, J.; Cui, Y.; Shi, Y.; He, H. Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLC-DAD analysis. Talanta 2020, 209, 120555. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Geng, Y.; Sun, X.; Wang, R.; Zheng, Z.; Hou, S.; Wang, X.; Ji, W. Molecularly imprinted polymers prepared from a single cross-linking functional monomer for solid-phase microextraction of estrogens from milk. J. Chromatogr. A 2020, 1627, 461400. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xu, S. Hollow mesoporous structured molecularly imprinted polymers for highly sensitive and selective detection of estrogens from food samples. J. Chromatogr. A 2017, 1501, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Qing, Y.; Cao, Y.; Luan, Y.; Lu, Y.; Liu, T.; Xu, W.; Huang, W.; Li, T.; Ni, X. A stimuli response, core-shell structured and surface molecularly imprinted polymers with specific pH for rapid and selective detection of sulfamethoxazole from milk sample. React. Funct. Polym. 2020, 151, 104578. [Google Scholar] [CrossRef]
- Farooq, S.; Nie, J.; Cheng, Y.; Yan, Z.; Shah Bacha, S.A.; Zhang, J.; Nahiyoon, R.A.; Hussain, Q. Synthesis of core-shell magnetic molecularly imprinted polymer for the selective determination of imidacloprid in apple samples. J. Sep. Sci. 2019, 42, 2455–2465. [Google Scholar] [CrossRef]
- Cheng, Y.; Nie, J.; Liu, H.; Kuang, L.; Xua, G. Synthesis and characterization of magnetic molecularly imprinted polymers for effective extraction and determination of kaempferol from apple samples. J. Chromatogr. A 2020, 1630, 461531. [Google Scholar] [CrossRef]
- Fu, H.; Xu, W.; Wang, H.; Liao, S.; Chen, G. Preparation of magnetic molecularly imprinted polymer for selective identification of patulin in juice. J. Chromatogr. B 2020, 1145, 122101. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinejad, A.; Kamrani, Z.; Karimi, G.; Motamedshariaty, V.S.; Mohajeri, S.A. Preparation, evaluation and application of dummy molecularly imprinted polymer for analysis of hesperidin in lime juice. J. Sep. Sci. 2021, 44, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, X.; Zhang, Z.; Zhang, Z.; Jiang, Z.; Yin, J. Synthesis of molecularly imprinted polymer adsorbents for solid-phase extraction of strobilurin fungicides from agricultural products. J. Sep. Sci. 2020, 43, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Nie, J.; Cheng, Y.; Shah Bacha, S.A.; Chang, W. Selective extraction of fungicide carbendazim in fruits using β-cyclodextrin based molecularly imprinted polymers. J. Sep. Sci. 2020, 43, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Luliński, P.; Maciejewska, D. Effective separation of dopamine from bananas on 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymer. J. Sep. Sci. 2012, 35, 1050–1057. [Google Scholar] [CrossRef]
- Atayat, A.; Mergola, L.; Mzoughi, N.; Del Sole, R. Response surface methodology approach for the preparation of a molecularly imprinted polymer for solid-phase extraction of fenoxycarb pesticide in mussels. J. Sep. Sci. 2019, 42, 3023–3032. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Zhang, X.; Wang, Y.; Li, D.; Gao, H.; Duan, X. Selective solid-phase extraction of four phenylarsonic compounds from feeds, edible chicken and pork with tailoring imprinted polymer. Food Chem. 2021, 347, 129054. [Google Scholar] [CrossRef]
- Xu, X.; Liang, S. Molecularly imprinted solid-phase extraction method for the gas chromatographic analysis of organochlorine fungicides in ginseng. J. Sep. Sci. 2019, 42, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 2019, 195, 390–400. [Google Scholar] [CrossRef]
- Maragou, N.C.; Thomaidis, N.S.; Theodoridis, G.A.; Lampic, E.N.; Koupparis, M.A. Determination of bisphenol A in canned food by microwave assisted extraction, molecularly imprinted polymer-solid phase extraction and liquid chromatography-mass spectrometry. J. Chromatogr. B 2020, 1137, 121938. [Google Scholar] [CrossRef]
- Kubiak, A.; Ciric, A.; Biesaga, M. Dummy molecularly imprinted polymer (DMIP) as a sorbent for bisphenol S and bisphenol F extraction from food samples. Microchem. J. 2020, 156, 104836. [Google Scholar] [CrossRef]
- Abdullah Alveroglu, E.; Balouch, A.; Khan, S.; Mahar, A.M.; Jagirani, M.S.; Pato, A.H. Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchem. J. 2020, 162, 105849. [Google Scholar] [CrossRef]
- Saad, E.M.; El Goharya, N.A.; Abdel-Halima, M.; Handoussa, H.; El Nashar, R.M.; Mizaikof, B. Molecularly imprinted polymers for selective extraction of rosmarinic acid from Rosmarinus officinalis L. Food Chem. 2021, 335, 127644. [Google Scholar] [CrossRef]
- Martins, R.O.; Gomes, I.C.; Mendonca Telles, A.D.; Kato, L.; Souza, P.S.; Chaves, A.R. Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources. J. Chromatogr. A 2020, 1620, 460977. [Google Scholar] [CrossRef]
- Wang, D.; Luo, X.; Wang, M.; Zhou, K.; Xia, Z. Selective separation and purification of polydatin by molecularly imprinted polymers from the extract of Polygoni Cuspidati Rhizoma et Radix, rats’ plasma and urine. J. Chromatogr. B 2020, 1156, 122307. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Deng, L.; Quan, T.; Gao, M.; Zhang, K.; Xi, Z.; Gao, D. Selective extraction of quinolizidine alkaloids from Sophora flavescens Aiton root using tailor-made deep eutectic solvents and magnetic molecularly imprinted polymers. Separ. Purif. Technol. 2021, 261, 118282. [Google Scholar] [CrossRef]
- Sun, Y.K.; Sun, G.-Y.; Jia, M.; Yang, J.; Liu, Z.-S.; Huang, Y.-P.; Aisa, H.A. Cost-effective imprinting to minimize consumption of template in room-temperature ionic liquid for fast purification of chlorogenic acid from the extract of E. ulmoides leaves. Anal. Bioanal. Chem. 2019, 411, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Novosvetska, L.; Chocholous, P.; Svec, F.; Sklenarova, H. Fully automated method based on on-line molecularly imprinted polymer solid-phase extraction for determination of lovastatin in dietary supplements containing red yeast rice. Anal. Bioanal. Chem. 2019, 411, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Jouyban, A.; Farajzadeh, M.A.; Mogaddam, M.R.A.; Nemati, M.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V. Molecularly imprinted polymer based-solid phase extraction combined with dispersive liquid-liquid microextraction using new deep eutectic solvent; selective extraction of valproic acid from exhaled breath condensate samples. Microchem. J. 2021, 161, 105772. [Google Scholar] [CrossRef]
- Luliński, P.; Bamburowicz-Klimkowska, M.; Dana, M.; Szutowski, M.; Maciejewska, D. Efficient strategy for the selective determination of dopamine in human urine by molecularly imprinted solid-phase extraction. J. Sep. Sci. 2016, 39, 895–903. [Google Scholar] [CrossRef]
- Luliński, P.; Bamburowicz-Klimkowska, M.; Dana, M.; Maciejewska, D. Development of a validated strategy for the determination of tryptamine in human cerebrospinal fluid in the presence of competitors using molecularly imprinted polymers. J. Sep. Sci. 2017, 40, 1824–1833. [Google Scholar] [CrossRef]
- Bouvarel, T.; Delaunay, N.; Pichon, V. Selective extraction of cocaine from biological samples with a miniaturized monolithic molecularly imprinted polymer and on-line analysis in nano-liquid chromatography. Anal. Chim. Acta 2020, 1096, 89–99. [Google Scholar] [CrossRef]
- Sartore, M.D.; Medina, D.A.V.; Costa, J.L.; Lancas, F.M.; Santos-Neto, A.J. Automated microextraction by packed sorbent of cannabinoids from human urine using a lab-made device packed with molecularly imprinted polymer. Talanta 2020, 219, 121185. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, H.L.; Teixeira, L.S.; Dinali, L.A.F.; Pires, B.C.; Simões, N.S.; Borges, K.B. Microextraction by packed sorbent using a new restricted molecularly imprinted polymer for the determination of estrogens from human urine samples. Microchem. J. 2019, 150, 104162. [Google Scholar] [CrossRef]
- Vasconcelos, I.; da Silva, P.H.R.; Dias, D.R.D.; de Freitas Marques, M.B.; da Nova Mussel, W.; Pedrosa, T.A.; Ribeiro e Silva, M.E.S.; de Souza Freitas, R.F.; de Sousa, R.G.; Fernandes, C. Synthesis and characterization of a molecularly imprinted polymer (MIP) for solid-phase extraction of the antidiabetic gliclazide from human plasma. Mater. Sci. Eng. C 2020, 116, 111191. [Google Scholar] [CrossRef] [PubMed]
- Tarek, M.; Elzanfaly, E.S.; Amer, S.M.; Wagdy, H.A. Selective analysis of Nadifloxacin in human plasma samples using a molecularly imprinted polymer-based solid-phase extraction proceeded by UPLC-DAD analysis. Microchem. J. 2020, 158, 105162. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, Y.; Guo, D.; Bi, X.; Hou, X. Surface molecularly imprinted polymer based on core-shell Fe3O4@MIL-101(Cr) for selective extraction of phenytoin sodium in plasma. Anal. Chim. Acta 2020, 1128, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Alimohammadi, Z.; Pourmoslemi, S. Selective extraction of zolpidem from plasma using molecularly imprinted polymer followed by high performance liquid chromatography. Microchem. J. 2021, 162, 105844. [Google Scholar] [CrossRef]
- Woźnica, M.; Luliński, P. Design of selective molecularly imprinted sorbent for the optimized solid-phase extraction of S-pramipexole from the model multicomponent sample of human urine. J. Sep. Sci. 2019, 42, 1412–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.-D.; Gao, D.; Huang, Y.-K.; Xu, W.-J.; Xi, Z.-N. Preparation of restricted access molecularly imprinted polymers based fiber for selective solid-phase microextraction of hesperetin and its metabolites in vivo. Talanta 2019, 202, 392–401. [Google Scholar] [CrossRef]
MIP Form | MIP Matrix Components | Template | Analyte | Comments (Characterization, C; Application, A) | Ref. |
---|---|---|---|---|---|
Bulk polymer | Acrylic acid EGDMA | HNPA | HNPA | C: TEM, SEM, 13C CP MAS NMR, BET, XRD, ESD, FTIR A: HNPA extraction from artificial urine | [30] |
Bulk polymer | MAA or MMA EGDMA | 4,4′-dihydroxydiphenyl ether | PBDE-47, PBDE-99 | C: BET, SEM, FTIR, TGA | [63] |
Bulk polymer | 4-vinylpyridine EGDMA | Naproxen and ketoprofen simultaneously | Naproxen, ketoprofen | C: HgP Co2+ was used as pivot during synthesis | [64] |
Monolithic disc | MAA EGDMA | Ecgonine methyl ester | Ecgonine methyl ester | C: ATR-FTIR, SEM A: ecgonine methyl ester extraction from water samples | [65] |
Mesoporous MIP | MAA EGDMA | 7-acetoxy-4-methylcoumarin | Aflatoxins | C: SEM, EDS, XRD, ATR-FTIR Mesoporous silica FDU-12 was used as the carrier during synthesis, A: aflatoxins extraction from food samples | [67] |
Mesoporous MIP | ICPTES TEOS | Bisphenol A | Bisphenol A | C: TGA, BET, SEM, FTIR, XPS Mesoporous silica SBA-15 was used as the carrier during synthesis, A: bisphenol A extraction from water samples | [68] |
Mesoporous MIP | Alkyne-modified β-cyclodextrin and propargyl amine | 2,4-D | 2,4-D | C: BET, FTIR, XRD, TGA, elemental analysis, 1H NMR (for template study) Mesoporous silica SBA-15 was used as the carrier during synthesis, A: 2,4-D extraction from water samples | [69] |
Precipitated MIP | 4-vinylpyridine EGDMA | Cr (VI) ion | Cr (VI) ion | C: XRD, SEM, EDS, BET, FTIR A: adsorption of Cr(VI) from electroplating industrial waste | [70] |
Precipitated MIP | MAA EGDMA | Tylosin tartrate | Tylosin tartrate | C: BET, DLS, SEM, FT-IR A: tylosin extraction from the broth | [71] |
MIP microspheres | MAA TRIM | Efavirenz | Efavirenz | C: FTIR, SEM, DLS A: efavirenz extraction from urine and serum | [72] |
MIP microspheres | MAA EGDMA | Alpha-(2,4-Dichlorophenyl)-1H-imidazole-1-ethanol | Climbazole, Clotrimazole Miconazole | C: BET, TGA, FTIR A: climbazole, clotrimazole, miconazole extraction from fish samples | [73] |
MIP microspheres | 4-vinylpyridine EGDMA | Bisphenol A | 8 Bisphenols | C: BET SiO2 nanoparticles were used as the emulsion stabilizer during synthesis A: bisphenol extraction from urine | [74] |
MIP microspheres | 4-vinylpyridine EGDMA | Resveratrol | Resveratrol | C: FTIR, XRD, TGA, BET, 1H, 13C NMR (for template removal) Silanized porous cellulose microspheres were used as the carrier during synthesis A: resveratrol extraction from Polygonum cuspidatum | [75] |
MIP multicore rattle-type microspheres | 4-vinylpyridine EGDMA | Bisphenol A | Bisphenol A | C: SEM Silica nanoparticles were used as the emulsion stabilizer during synthesis | [76] |
Core-shell MIP | Acrylamide EGDMA | Lincomycin | Lincomycin | C: DLS, SEM, FTIR Core: components: methacrylamide, EGDMA A: Lincomycin extraction from milk samples | [77] |
Core-shell MIP | Dopamine | Lysozyme | Lysozyme | C: XPS, TGA, SEM, TEM, FTIR Core: carboxyl-functionalized carbon microspheres made from glucose and acrylic acid | [78] |
Core-shell MIP | MAA EGDMA | Carbamazepine | Carbamazepine | C: SEM, FTIR Core: polystyrene-coated with siloxane and then polystyrene removal—siloxane shell A: carbamazepine extraction from water samples | [79] |
Core-shell MIP | MAA EGDMA | Theanine | 18 amino acids | C: SEM, TEM, FTIR Core: siloxane functionalized by VTMS A: separation of amino acids in tobacco and tobacco smoke | [80] |
Core-shell MIP | MAA, acrylamide EGDMA | Artemisinin | Artemisinin | C: XPS, SEM, TEM, EDS (elemental mapping) Core: PDA-TiO2 nanoparticles functionalized by MPTS and poly(vinylidene fluoride) | [81] |
Core-shell MIP | Aminophenylboric acid Dopamine | Luteolin | Luteolin | C: FTIR, XPS, DLS, SEM Core: siloxane coated with ZrO2 A: luteolin extraction from peanut shell samples | [82] |
Core-shell MIP | MAA Tetraethoxysilane | S-amlodipine | S-amlodipine | C: BET, TGA, DSC, SEM Core: MOF-177 | [83] |
Magnetic core-shell MIP | MAA EGDMA | N,N-dimethylphenethylamine | Hordenine | C: SEM, TEM, VSM, XRD, BET Core: Fe3O4 coated with siloxane and functionalized by MPS A: hordenine extraction from plasma | [84] |
Magnetic core-shell MIP | Acrylamide N,N-methylenebisacrylamide | Ce (III) ion | Ce (III) ion | C: TEM, TGA, BET, FTIR Core mesoporous SBA-15 material with Fe3O4 functionalized by RAFT agent A: Ce (III) ion removal from water samples | [85] |
Magnetic core-shell MIP | Acrylamide EGDMA | 3-phenoxybenzoic acid | Pyrethroids pesticides | C: BET, TGA, FTIR, VSM, SEM, TEM Core: NH2-functionalized Fe3O4 with graphene oxide A: pyrethroids pesticides extraction from fruit juices samples | [86] |
Magnetic core-shell MIP | Phenyltrimethoxysilane Tetraethoxysilane | Aristolochic acid I | Aristolochic acid I | C: BET, TEM, XRD, FTIR, VSM Core: magnetic carbon nanotubes functionalized by carboxyl groups A: aristolochic acid I extraction from Traditional Chinese Medicine | [87] |
Magnetic core-shell MIP | 4-vinylphenylboronic acid | Luteolin | Luteolin | C: SEM, TEM, XPS, TGA, FTIR, BET, VSM Core: silica nano-bottles (NBs) capped with 3-chloropropyl groups and a hydrophilic interior surface (capped with amino-groups modified by succinic anhydride) and magnetic nanoparticles attached to carboxylic acid functionalized NBs | [88] |
Magnetic core-shell MIP | Commercial | -- | 16 PAHs | Commercially available magnetic sorbent, provided by NanoMyP® | [89] |
Magnetic stir bar MIP | MAA EGDMA | Propazine | 6 triazines | Core: oleic acid functionalized Fe3O4 coated by silica A: triazines extraction from soil samples | [90] |
Precipitated MIP | MAA TRIM | Metergoline | Metergoline | C: SEM, BET MIP was immobilized on three-dimensional printed scaffolds made from poly-ε-caprolactone | [94] |
MIP microspheres | MAA TRIM | Benzyl paraben | 3 Parabens | C: SEM MIP microspheres were entrapped in electro-spun polystyrene fibers A: parabens extraction from water samples | [95] |
Imprinted microporous chitosan foam | Chitosan Epichlorohydrin | U (VI) ion | U (VI) ion | C: SEM, XPS, FTIR, EDS (elemental mapping) | [96] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janczura, M.; Luliński, P.; Sobiech, M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. Materials 2021, 14, 1850. https://doi.org/10.3390/ma14081850
Janczura M, Luliński P, Sobiech M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. Materials. 2021; 14(8):1850. https://doi.org/10.3390/ma14081850
Chicago/Turabian StyleJanczura, Marta, Piotr Luliński, and Monika Sobiech. 2021. "Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects" Materials 14, no. 8: 1850. https://doi.org/10.3390/ma14081850
APA StyleJanczura, M., Luliński, P., & Sobiech, M. (2021). Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. Materials, 14(8), 1850. https://doi.org/10.3390/ma14081850