A2BC-Type Porphyrin SAM on Gold Surface for Bacteria Detection Applications: Synthesis and Surface Functionalization
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Measurements
2.2. Self-Assembled Monolayer (SAM) Film Preparation
2.3. Bacteria Culture, Staining and Substrate Incubation
2.4. Synthesis
3. Results and Discussion
3.1. Synthesis of A2BC-Type Porphyrins and Photophysical Properties
3.2. SAM Formation on Gold Substrates
3.2.1. Absorption Properties
3.2.2. Contact Angle
3.2.3. Cyclic Voltammetry
3.2.4. Infrared Reflection Absorption Spectroscopy
3.3. Fast Lifetime Imaging Microscopy (FLIM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, A.; Rushworth, J.V.; Hirst, N.A.; Millner, P.A. Biosensors for Whole-Cell Bacterial Detection. Clin. Microbiol. Rev. 2014, 27, 631–646. [Google Scholar] [CrossRef] [Green Version]
- Fournier, P.-E.; Drancourt, M.; Colson, P.; Rolain, J.-M.; La Scola, B.; Raoult, D. Modern Clinical Microbiology: New Challenges and Solutions. Nat. Rev. Microbiol. 2013, 11, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Paniel, N.; Baudart, J. Calorimetric and Electrochemical Genosensors for the Detection of Escherichia coli DNA without Amplification in Seawater. Talanta 2013, 115, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A.M.; et al. Ultrasensitive Detection of Nucleic Acids Using Deformed Graphene Channel Field Effect Biosensors. Nat. Commun. 2020, 11, 1543. [Google Scholar] [CrossRef] [PubMed]
- Farrow, B.; Hong, S.A.; Romero, E.C.; Lai, B.; Coppock, M.B.; Deyle, K.M.; Finch, A.S.; Stratis-Cullum, D.N.; Agnew, H.D.; Yang, S.; et al. A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical Detection of Anthrax Protective Antigen. ACS Nano 2013, 7, 9452–9460. [Google Scholar] [CrossRef]
- Ligler, F.S.; Sapsford, K.E.; Golden, J.P.; Shriver-Laker, L.S.; Taitt, C.R.; Dyer, M.A.; Barone, S.; Myatt, C.J. The Array Biosensor: Portable, Automated System. Anal. Sci. 2007, 23, 5–10. [Google Scholar]
- Pujol-Vila, F.; Villa, R.; Alvarez, M. Nanomechanical Sensors as A Tool for Bacteria Detection and Antibiotic Susceptibility. Front. Mech. Eng. 2020, 6, 1–18. [Google Scholar] [CrossRef]
- Karbelkar, A.A.; Furst, A.L. Electrochemical Diagnostics for Bacterial Infectious Diseases. ACS Infect. Dis. 2020, 6, 1567–1571. [Google Scholar]
- Ishida, M.; Naruta, Y.; Tani, F. A Porphyrin-Related Macrocycle with An Embedded 1,10-Phenanthroline Moiety: Fluorescent Magnesium(II) Ion Sensor. Angew. Chem. Int. Ed. 2010, 49, 91–94. [Google Scholar] [CrossRef]
- Bettini, S.; Pagano, R.; Borovkov, V.; Giancane, G.; Valli, L. The Role of the Central Metal Ion of Ethane-Bridged Bis-Porphyrins in Histidine Sensing. J. Colloid Interface Sci. 2019, 533, 762–770. [Google Scholar] [CrossRef]
- Vaishnavi, E.; Renganathan, R. “Turn-On-Off-On” Fluorescence Switching of Quantum Dots-Cationic Porphyrin Nanohybrid: A Sensor for DNA. Analyst 2014, 139, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Penza, M.; Alvisi, M.; Serra, E.; Paolesse, R.; D’Amico, A.; Di Natale, C.; Rossi, R. Carbon Nanotube Films as A Platform to Transduce Molecular Recognition Events in Metalloporphyrins. Nanotechnology 2011, 22, 125502. [Google Scholar] [CrossRef] [PubMed]
- Vlascici, D.; Fagadar-Cosma, E.; Popa, I.; Chiriac, V.; Gil-Agusti, M. A Novel Sensor for Monitoring of Iron(III) Ions Based on Porphyrins. Sensors 2012, 12, 8193–8203. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.C.; Shi, X.M.; Zhang, J.R.; Zhu, J.J. Cathode Photoelectrochemical Immunosensing Platform Integrating Photocathode with Photoanode. Anal. Chem. 2016, 88, 10352–10356. [Google Scholar] [CrossRef] [Green Version]
- Zilberman, Y.; Chen, Y.; Sonkusale, S.R. Dissolved Ammonia sensing in complex mixtures using metalloporphyrin-based optoelectronic sensor and spectroscopic detection. Sensors Actuators B Chem. 2014, 202, 976–983. [Google Scholar] [CrossRef]
- Kawata, T.; Ono, T.; Kanai, Y.; Ohno, Y.; Maehashi, K.; Inoue, K.; Matsumoto, K. Improved Sensitivity of A Graphene FET Biosensor Using Porphyrin Linkers. Jpn. J. Appl. Phys. 2018, 57, 65103. [Google Scholar] [CrossRef]
- Liu, F.; Ni, A.S.Y.; Lim, Y.; Mohanram, H.; Bhattacharjya, S.; Xing, B. Lipopolysaccharide Neutralizing Peptide–Porphyrin Conjugates for Effective Photoinactivation and Intracellular Imaging of Gram-Negative Bacteria Strains. Bioconjugate Chem. 2012, 23, 1639–1647. [Google Scholar] [CrossRef]
- Sathyapalan, A.; Lohani, A.; Santra, S.; Goyal, S.; Ravikanth, M.; Mukherji, S.; Ramgopal Rao, V. Preparation, Characterization, and Electrical Properties of A Self-Assembled meso-Pyridyl Porphyrin Monolayer on Gold Surfaces. Aust. J. Chem. 2005, 58, 810–816. [Google Scholar] [CrossRef]
- Reainthippayasakul, W.; Paosawatyayong, B.; Bhanthumnavin, W. Synthesis and Binding Properties of Arylethyne-Linked Porphyrin-Zinc Complexes for Organic Electronics Applications. J. Nanosci. Nanotechnol. 2013, 13, 3617–3621. [Google Scholar] [CrossRef]
- Brückner, C.; Posakony, J.J.; Johnson, C.K.; Boyle, R.W.; James, B.R.; Dolphin, D. Novel and Improved Synthesis of 5,15-Diphenylporphyrin and Its Dipyrrolic Precursors. J. Porphyr. Phtalocyanines 1998, 2, 455–465. [Google Scholar] [CrossRef]
- Feng, X.; Senge, M.O. An Efficient Synthesis of Highly Functionalized Asymmetric Porphyrins with Organolithium Reagents. J. Chem. Soc. Perkin Trans. 2001, 1, 1030–1038. [Google Scholar] [CrossRef]
- Gryko, D.T.; Clausen, C.; Roth, K.M.; Dontha, N.; Bocian, D.F.; Kuhr, W.G.; Lindsey, J.S. Synthesis of “Porphyrin-Linker-Thiol” Molecules with Diverse Linkers for Studies of Molecular-Based Information Storage. J. Org. Chem. 2000, 65, 7345–7355. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shen, D.-M.; Chen, Q.-Y. Unexpected Bromination Ring-Opening of Tetraarylporphyrins. Chem. Commun. 2006, 37, 770–772. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Boyle, R. Synthesis of Unsymmetrically Substituted meso-Phenylporphyrins by Suzuki Cross Coupling Reactions. J. Chem. Soc. Perkin Trans. 2002, 1, 1397–1400. [Google Scholar] [CrossRef]
- Sortino, M.; Filho, V.C.; Corrêa, R.; Zacchino, S. N-Phenyl and N-Phenylalkyl-Maleimides Acting against Candida Spp.: Time-to-Kill, Stability, Interaction with Maleamic Acids. Bioorganic Med. Chem. 2008, 16, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Morales, P.; Moreno, L.; Fernández-Ruiz, J.; Jagerovic, N. Synthesis of A Novel CB2 Cannabinoid-Porphyrin Conjugate based on An Antitumor Chromenopyrazoledione. J. Porphyr. Phthalocyanines 2017, 21, 67–76. [Google Scholar] [CrossRef]
- Chen, Y.; Parr, T.; Holmes, A.E.; Nakanishi, K. Porphyrinmaleimides: Towards Thiol Probes for Cysteine Residues in Proteins. Bioconjugate Chem. 2008, 19, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Meot-Ner, M.; Adler, A.D. Substituent Effects in Noncoplanar π Systems. Ms-Porphins. J. Am. Chem. Soc. 1975, 97, 5107–5111. [Google Scholar] [CrossRef]
- Maiti, N.C.; Mazumdar, S.; Periasamy, N. J- and H-Aggregates of Porphyrin-Surfactant Complexes: Time-Resolved Fluorescence and Other Spectroscopic Studies. J. Phys. Chem. B 1998, 102, 1528–1538. [Google Scholar] [CrossRef]
- Boeckl, M.S.; Bramblett, A.L.; Hauch, K.D.; Sasaki, T.; Ratner, B.D.; Rogers, J.W. Self-Assembly of Tetraphenylporphyrin Monolayers on Gold Substrates. Langmuir 2000, 16, 5644–5653. [Google Scholar] [CrossRef]
- Hestand, N.J.; Spano, F.C. Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chem. Rev. 2018, 118, 7069–7163. [Google Scholar] [CrossRef]
- Otte, F.L.; Lemke, S.; Schütt, C.; Krekiehn, N.R.; Jung, U.; Magnussen, O.M.; Herges, R. Ordered Monolayers of Free-Standing Porphyrins on Gold. J. Am. Chem. Soc. 2014, 136, 11248–11251. [Google Scholar] [CrossRef]
- Lu, X.; Li, M.; Yang, C.; Zhang, L.; Fi, Y.; Jiang, L.; Li, H.; Jiang, L.; Liu, C.; Hu, W. Electron Transport through A Self-Assembled Monolayer of Thiol-End-Functionalized Tetraphenylporphines and Metal Tetraphenylporphines. Langmuir 2006, 22, 3035–3039. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Porter, M.D.; Bright, T.B.; Allara, D.L.; Chidsey, C.E.D. Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry. J. Am. Chem. Soc. 1987, 109, 3559–3568. [Google Scholar] [CrossRef]
- Qingwen, L.; Hong, G.; Yiming, W.; Guoan, L.; Jie, M. Studies on Self-Assembly Monolayers of Cysteine on Gold by XPS, QCM, and Electrochemical Techniques. Electroanalysis 2001, 13, 1342–1346. [Google Scholar] [CrossRef]
- Strug, I.; Utztat, C.; Nadler, T. IR-Based Protein & Peptide Quantitation. Genet. Eng. Biotechnol. News 2012, 32, 30–31. [Google Scholar]
- Barth, A. Infrared Spectroscopy of Proteins. Biochem. Biophys. Acta 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venyaminov, S.Y.; Kalnin, N.N. Quantitative IR Spectrophotometry of Peptide Compounds in Water (H2O) Solutions. I. Spectral Parameters of Amino Acid Residue Absorption Bands. Biopolymers 1990, 30, 1243–1257. [Google Scholar] [CrossRef] [PubMed]
- Datta, R.; Heaster, M.T.; Sharick, T.J.; Gilette, A.A.; Skala, C.M. Fluorescence Lifetime Imaging Microscopy: Fundamentals and Advances in Instrumentation, Analysis, and Applications. J. Biomed. Opt. 2020, 25, 1–43. [Google Scholar] [CrossRef]
Porphyrin | λmax [nm] | ||||||
---|---|---|---|---|---|---|---|
Soret | Q bands | PL | |||||
Porpyhrin 2 | 407 | 502 | 536 | 574 | 629 | 632 | 696 |
Porphyrin 5 | 415 | 509 | 543 | 584 | 638 | 642 | 706 |
Porphyrin 10 | 421 | 516 | 552 | 592 | 647 | 651 | 717 |
Porphyrin 11 | 421 | 517 | 553 | 592 | 647 | 652 | 717 |
Porphyrin 12 | 422 | 517 | 552 | 592 | 649 | 652 | 717 |
Contact Angle (CA) and Surface Free Energy | Gold Reference | Porphyrin 5 | Porphyrin 10 | Porphyrin 11 | Porphyrin 12 |
---|---|---|---|---|---|
CA(L) CH2I2 in ° | 23.71 (±1.91) | 17.71 (±1.97) | 15.15 (±4.34) | 30.50 (±3.87) | 19.42 (±3.89) |
CA(L) H2O in ° | 71.18 (±2.51) | 76.36 (±2.57) | 62.58 (±2.62) | 66.34 (±3.78) | 72.42 (±1.98) |
Surface Free Energy in mN/m | 51.81 (±1.48) | 51.55 (±1.28) | 55.15 (±10.9) | 51.92 (±3.05) | 52.53 (±1.58) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, L.; Könemund, L.; Rohnacher, V.; Pucci, A.; Johannes, H.-H.; Kowalsky, W. A2BC-Type Porphyrin SAM on Gold Surface for Bacteria Detection Applications: Synthesis and Surface Functionalization. Materials 2021, 14, 1934. https://doi.org/10.3390/ma14081934
Neumann L, Könemund L, Rohnacher V, Pucci A, Johannes H-H, Kowalsky W. A2BC-Type Porphyrin SAM on Gold Surface for Bacteria Detection Applications: Synthesis and Surface Functionalization. Materials. 2021; 14(8):1934. https://doi.org/10.3390/ma14081934
Chicago/Turabian StyleNeumann, Laurie, Lea Könemund, Valentina Rohnacher, Annemarie Pucci, Hans-Hermann Johannes, and Wolfgang Kowalsky. 2021. "A2BC-Type Porphyrin SAM on Gold Surface for Bacteria Detection Applications: Synthesis and Surface Functionalization" Materials 14, no. 8: 1934. https://doi.org/10.3390/ma14081934
APA StyleNeumann, L., Könemund, L., Rohnacher, V., Pucci, A., Johannes, H. -H., & Kowalsky, W. (2021). A2BC-Type Porphyrin SAM on Gold Surface for Bacteria Detection Applications: Synthesis and Surface Functionalization. Materials, 14(8), 1934. https://doi.org/10.3390/ma14081934