A Straightforward Approach to Create Ag/SWCNT Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Compounds and Materials
2.2. Manufacture of Free-Standing SWCNT-Based Films
2.3. Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerst, M.D.; Graedel, T.E. In-use stocks of metals: Status and implications. Environ. Sci. Technol. 2008, 42, 7038–7045. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, T.; Schlegel, S.; Grossmann, S.; Hoidis, M. Comparison between nickel and silver as coating materials of con-ductors made of copper or aluminum used in electric power engineering. In Proceedings of the 27th International Conference on Electrical Contacts (ICEC), Dresden, Germany, 22–26 June 2014; pp. 1–6. [Google Scholar]
- Janas, D.; Liszka, B. Copper matrix nanocomposites based on carbon nanotubes or graphene. Mater. Chem. Front. 2017, 2, 22–35. [Google Scholar] [CrossRef]
- Brady, G.J.; Way, A.J.; Safron, N.S.; Evensen, H.T.; Gopalan, P.; Arnold, M.S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monthioux, M.; Kuznetsov, V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006, 44, 1621–1623. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Bandaru, P.R. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 2007, 7, 1239–1267. [Google Scholar] [CrossRef]
- Marinho, B.; Ghislandi, M.; Tkalya, E.; Koning, C.E.; de With, G. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 2012, 221, 351–358. [Google Scholar] [CrossRef]
- Kholmanov, I.N.; Magnuson, C.W.; Aliev, A.E.; Li, H.; Zhang, B.; Suk, J.W.; Zhang, L.L.; Peng, E.; Mousavi, S.H.; Khanikaev, A.B.; et al. Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 2012, 12, 5679–5683. [Google Scholar] [CrossRef]
- Kumanek, B.; Janas, D. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, D.; Gong, X.-G. Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 2009, 95, 163103. [Google Scholar] [CrossRef] [Green Version]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’Ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube—Polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Ranjbartoreh, A.R.; Wang, B.; Shen, X.; Wang, G. Advanced mechanical properties of graphene paper. J. Appl. Phys. 2011, 109, 014306. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Janas, D.; Vilatela, A.C.; Koziol, K.K. Performance of carbon nanotube wires in extreme conditions. Carbon 2013, 62, 438–446. [Google Scholar] [CrossRef]
- Dudka, S.; Adriano, D.C. Environmental impacts of metal ore mining and processing: A review. J. Environ. Qual. 1997, 26, 590–602. [Google Scholar] [CrossRef]
- Norgate, T.; Jahanshahi, S.; Rankin, W. Assessing the environmental impact of metal production processes. J. Clean. Prod. 2007, 15, 838–848. [Google Scholar] [CrossRef]
- Lee, J.C.; Wen, Z. Rare earths from mines to metals: Comparing environmental impacts from China’s main production pathways. J. Ind. Ecol. 2017, 21, 1277–1290. [Google Scholar] [CrossRef]
- Arai, S.; Murakami, I.; Shimizu, M.; Oshigane, A. Fabrication of CNT/Cu composite yarn via single-step electrodeposition. J. Electrochem. Soc. 2020, 167, 102509. [Google Scholar] [CrossRef]
- Wang, P.; Cao, Q.; Wang, H.; Liu, S.; Chen, Y.; Peng, Q. CNT-sandwiched copper composites as super thermal conductors for heat management. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 128, 114557. [Google Scholar] [CrossRef]
- Li, K.; McGuire, M.A.; Lupini, A.R.; Skolrood, L.; List, F.; Ozpineci, B.; Ozcan, S.; Aytug, T. Copper-carbon nanotube composites enabled by electrospinning for advanced conductors. ACS Appl. Nano Mater. 2020, 3, 6863–6875. [Google Scholar] [CrossRef]
- Sundaram, R.M.; Sekiguchi, A.; Sekiya, M.; Yamada, T.; Hata, K. Copper/carbon nanotube composites: Research trends and outlook. R. Soc. Open Sci. 2018, 5, 180814. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, C.; Lecouturier, F.; Mesguich, D.; Ferreira, N.; Chevallier, G.; Estournès, C.; Weibel, A.; Laurent, C. High strength-High conductivity double-walled carbon nanotube—Copper composite wires. Carbon 2016, 96, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Guiderdoni, C.; Pavlenko, E.; Turq, V.; Weibel, A.; Puech, P.; Estournès, C.; Peigney, A.; Bacsa, W.; Laurent, C. The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties. Carbon 2013, 58, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Zhao, J.; Li, S.; Zhang, X.; Yong, Z.; Li, Q. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers. Nanoscale 2011, 3, 4215–4219. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, C.; Yasuda, Y.; Takeya, S.; Ata, S.; Nishizawa, A.; Futaba, D.; Yamada, T.; Hata, K. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. Nanoscale 2014, 6, 2669–2674. [Google Scholar] [CrossRef]
- Arai, S.; Osaki, T.; Hirota, M.; Uejima, M. Fabrication of copper/single-walled carbon nanotube composite film with homogeneously dispersed nanotubes by electroless deposition. Mater. Today Commun. 2016, 7, 101–107. [Google Scholar] [CrossRef]
- Arai, S.; Osaki, T. Fabrication of copper/multiwalled carbon nanotube composites containing different sized nanotubes by electroless deposition. J. Electrochem. Soc. 2014, 162, D68–D73. [Google Scholar] [CrossRef] [Green Version]
- Mohanaraj, S.; Wonnenberg, P.; Cohen, B.; Zhao, H.; Hartings, M.R.; Zou, S.; Fox, D.M.; Zestos, A.G. Gold nanoparticle modified carbon fiber microelectrodes for enhanced neurochemical detection. J. Vis. Exp. 2019, 147, 59552. [Google Scholar] [CrossRef]
- Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta 2015, 887, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, A.; Asrat, T.; Liu, F.; Wonnenberg, P.; Zestos, A.G. Carbon nanotube yarn microelectrodes promote high temporal measurements of serotonin using fast scan cyclic voltammetry. Sensors 2020, 20, 1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.; Dutta, G.; Yin, H.; Siddiqui, S.; Arumugam, P.U. Detection of neurochemicals with enhanced sensitivity and selectivity via hybrid multiwall carbon nanotube-ultrananocrystalline diamond microelectrodes. Sens. Actuators B Chem. 2018, 258, 193–203. [Google Scholar] [CrossRef]
- Colley, A.L.; Williams, C.G.; D’Haenens Johansson, U.; Newton, M.E.; Unwin, P.R.; Wilson, N.R.; MacPherson, J.V. Examination of the spatially heterogeneous electroactivity of boron-doped diamond microarray electrodes. Anal. Chem. 2006, 78, 2539–2548. [Google Scholar] [CrossRef]
- Perić-Grujić, A.A.; Nešković, O.M.; Veljković, M.V.; Laušević, Z.V.; Laušević, M.D. Surface characterization of silver and palladium modified glassy carbon. Bull. Mater. Sci. 2007, 30, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Serway, R.A.; Jewett, J.W. Principles of Physics; Saunders College Pub: Fort Worth, TX, USA, 1998; Volume 1. [Google Scholar]
- Lian, L.; Dong, D.; Feng, D.; He, G. Low roughness silver nanowire flexible transparent electrode by low temperature solution-processing for organic light emitting diodes. Org. Electron. 2017, 49, 9–18. [Google Scholar] [CrossRef]
- Kim, K.-S.; Lee, Y.-C.; Ahn, J.-H.; Jung, S.-B. Evaluation of the flexibility of silver circuits screen-printed on polyimide with an environmental reliability test. J. Nanosci. Nanotechnol. 2011, 11, 5806–5811. [Google Scholar] [CrossRef]
- Kim, K.-S.; Lee, Y.-C.; Kim, J.-W.; Jung, S.-B. Flexibility of silver conductive circuits screen-printed on a polyimide substrate. J. Nanosci. Nanotechnol. 2011, 11, 1493–1498. [Google Scholar] [CrossRef]
- Lekawa-Raus, A.; Haladyj, P.; Koziol, K. Carbon nanotube fiber-silver hybrid electrical conductors. Mater. Lett. 2014, 133, 186–189. [Google Scholar] [CrossRef]
- Ma, P.C.; Tang, B.Z.; Kim, J.-K. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 2008, 46, 1497–1505. [Google Scholar] [CrossRef]
- Namura, M.; Sato, Y.; Sashida, N.; Ogino, S.; Motomiya, K.; Jeyadevan, B.; Tohji, K. Characterization of silver nanoparticle-decorated single-walled carbon nanotube films. Full. Nanotub. Carbon Nanostruct. 2009, 17, 587–599. [Google Scholar] [CrossRef]
- Rdest, M.; Janas, D. Effective doping of single-walled carbon nanotubes with polyethyleneimine. Materials 2020, 14, 65. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, M.; Dresselhaus, G.; Jorio, A.; Filho, A.S.; Saito, R. Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 2002, 40, 2043–2061. [Google Scholar] [CrossRef]
- Costa, S.; Borowiak-Palen, E.; Kruszynska, M.; Bachmatiuk, A.; Kalenczuk, R. Characterization of carbon nanotubes by raman spectroscopy. Mater. Sci. 2008, 26, 433–441. [Google Scholar]
- Kobashi, K.; Yoon, H.; Ata, S.; Yamada, T.; Futaba, N.N.; Hata, K. Designing neat and composite carbon nanotube materials by porosimetric characterization. Nanoscale Res. Lett. 2017, 12, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuszter, G.; Bogya, E.-S.; Horváth, D.; Tóth, Á.; Haspel, H.; Kukovecz, Á. Liquid droplet evaporation from buckypaper: On the fundamental properties of the evaporation profile. Microporous Mesoporous Mater. 2015, 209, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Kumanek, B.; Wasiak, T.; Stando, G.; Stando, P.; Łukowiec, D.; Janas, D. Simple method to improve electrical conductivity of films made from single-walled carbon nanotubes. Nanomaterials 2019, 9, 1113. [Google Scholar] [CrossRef] [Green Version]
- Leong, C.-K.; Chung, D.D.L. Pressure electrical contact improved by carbon black paste. J. Electron. Mater. 2004, 33, 203–206. [Google Scholar] [CrossRef]
- Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.S.; Koziol, K.K.K. Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv. Funct. Mater. 2014, 24, 3661–3682. [Google Scholar] [CrossRef]
- Khanna, P.; Singh, N.; Kulkarni, D.; Deshmukh, S.; Charan, S.; Adhyapak, P. Water based simple synthesis of re-dispersible silver nano-particles. Mater. Lett. 2007, 61, 3366–3370. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rdest, M.; Janas, D. A Straightforward Approach to Create Ag/SWCNT Composites. Materials 2021, 14, 1956. https://doi.org/10.3390/ma14081956
Rdest M, Janas D. A Straightforward Approach to Create Ag/SWCNT Composites. Materials. 2021; 14(8):1956. https://doi.org/10.3390/ma14081956
Chicago/Turabian StyleRdest, Monika, and Dawid Janas. 2021. "A Straightforward Approach to Create Ag/SWCNT Composites" Materials 14, no. 8: 1956. https://doi.org/10.3390/ma14081956
APA StyleRdest, M., & Janas, D. (2021). A Straightforward Approach to Create Ag/SWCNT Composites. Materials, 14(8), 1956. https://doi.org/10.3390/ma14081956