Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications
Abstract
:1. Introduction
2. Material Properties Relevant for Implantable Optical Fibers
3. Optical Fiber Fabrication Techniques
3.1. Thermal Drawing from Preforms
3.2. Extrusion and Extrusion-Based 3D Printing
3.3. Casting in a Mold and Curing
4. Challenges in Biocompatible and Biodegradable Optical Fiber Fabrication and Operation
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Deisseroth, K. Optogenetics. Nat. Methods 2011, 8, 26–29. [Google Scholar] [CrossRef]
- Bansal, A.; Yang, F.; Xi, T.; Zhang, Y.; Ho, J.S. In vivo wireless photonic photodynamic therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 1469–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.; Choi, J.W.; Kim, S.; Nizamoglu, S.; Hahn, S.K.; Yun, S.H. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo. Nat. Photonics 2013, 7, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Yetisen, A.K.; Jiang, N.; Fallahi, A.; Montelongo, Y.; Ruiz-Esparza, G.U.; Tamayol, A.; Zhang, Y.S.; Mahmood, I.; Yang, S.-A.; Kim, K.S.; et al. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid. Adv. Mater. 2017, 29, 1606380. [Google Scholar] [CrossRef]
- Shan, D.; Gerhard, E.; Zhang, C.; Tierney, J.W.; Xie, D.; Liu, Z.; Yang, J. Polymeric biomaterials for biophotonic applications. Bioact. Mater. 2018, 3, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Nazempour, R.; Zhang, Q.; Fu, R.; Sheng, X. Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine. Materials 2018, 11, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humar, M.; Kwok, S.J.J.; Choi, M.; Yetisen, A.K.; Cho, S.; Yun, S.H. Toward biomaterial-based implantable photonic devices. Nanophotonics 2017, 6, 414–434. [Google Scholar] [CrossRef]
- Shabahang, S.; Kim, S.; Yun, S.-H. Light-Guiding Biomaterials for Biomedical Applications. Adv. Funct. Mater. 2018, 28, 1706635. [Google Scholar] [CrossRef]
- Wang, J.; Dong, J. Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors 2020, 20, 3981. [Google Scholar] [CrossRef]
- Abdel-Wahab, A.A.; Ataya, S.; Silberschmidt, V.V. Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling. Polym. Test. 2017, 58, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.F. On the mechanisms of biocompatibility. Biomaterials 2008, 29, 2941–2953. [Google Scholar] [CrossRef] [PubMed]
- Argyros, A. Microstructured Polymer Optical Fibers. J. Light. Technol. 2009, 27, 1571–1579. [Google Scholar] [CrossRef]
- Argyros, A. Microstructures in Polymer Fibres for Optical Fibres, THz Waveguides, and Fibre-Based Metamaterials. ISRN Opt. 2013, 2013, 785162. [Google Scholar] [CrossRef]
- Ziemann, O.; Krauser, J.; Zamzow, P.E.; Daum, W. POF Handbook Optical Short Range Transmission Systems; Springer: Berlin, Germany, 2008; ISBN 978-3-540-76628-5. [Google Scholar]
- Leal-Junior, A.G.; Diaz, C.A.R.R.; Avellar, M.; Jos, M.; Marques, C.; Frizera, A.; Avellar, L.M.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer Optical Fiber Sensors in Healthcare Applications: A Comprehensive Review. Sensors 2019, 19, 3156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, G.; Pun, C.J.; Tam, H.; Member, S.; Wong, A.C.L.; Lu, C.; Wai, P.K.A. Single-Mode Perfluorinated Polymer Optical Fibers Applications. Technology 2010, 22, 106–108. [Google Scholar]
- Peters, K. Polymer optical fiber sensors—A review. Smart Mater. Struct. 2011, 20, 013002. [Google Scholar] [CrossRef]
- Liu, H.Y.; Peng, G.D.; Chu, P.L.; Koike, Y.; Watanabe, Y. Photosensitivity in low-loss perfluoropolymer (CYTOP) fibre material. Electron. Lett. 2001, 37, 347–348. [Google Scholar] [CrossRef]
- Woyessa, G.; Fasano, A.; Markos, C.; Stefani, A.; Rasmussen, H.K.; Bang, O. Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 2017, 7, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Khan, L.; Webb, D.J.; Kalli, K.; Rasmussen, H.K.; Stefani, A.; Bang, O. Humidity insensitive TOPAS polymer fiber Bragg grating sensor. Opt. Express 2011, 19, 19731–19739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emiliyanov, G.; Jensen, J.B.; Bang, O.; Hoiby, P.E.; Pedersen, L.H.; Kjaer, E.M.; Lindvold, L. Localized biosensing with Topas microstructured polymer optical fiber. Opt. Lett. 2007, 32, 460–462. [Google Scholar] [CrossRef]
- Koike, Y.; Asai, M. The future of plastic optical fiber. NPG Asia Mater. 2009, 1, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Zubia, J.; Arrue, J. Plastic optical fibers: An introduction to their technological processes and applications. Opt. Fiber Technol. 2001, 7, 101–140. [Google Scholar] [CrossRef]
- Jin, Y.; Granville, A.M. Polymer Fiber Optic Sensors—A Mini Review of their Synthesis and Applications. J. Biosens. Bioelectron. 2016, 7. [Google Scholar] [CrossRef]
- Min, R.; Ortega, B.; Marques, C. Latest Achievements in Polymer Optical Fiber Gratings: Fabrication and Applications. Photonics 2019, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Lyu, S.; Untereker, D. Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 2009, 10, 4033–4065. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, S.; Foo, C.T.W.P.; Rossetti, F.; Textor, M.; Vunjak-Novakovic, G.; Kaplan, D.L.; Merkle, H.P.; Meinel, L. Silk fibroin as an organic polymer for controlled drug delivery. J. Control. Release 2006, 111, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Vepari, C.; Jin, H.-J.; Kim, H.J.; Kaplan, D.L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3115–3124. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Manouchehri, S.; Ahmadi, Z.; Saeb, M.R.; Urbanska, A.M.; Kaplan, D.L.; Mozafari, M. Agarose-based biomaterials for tissue engineering. Carbohydr. Polym. 2018, 187, 66–84. [Google Scholar] [CrossRef]
- Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer-Based Hydrogels As Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011, 1387–1408. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Sauna, Z.E. Immunogenicity of Protein-Based Therapeutics. Available online: https://www.fda.gov/vaccines-blood-biologics/biologics-research-projects/immunogenicity-protein-based-therapeutics (accessed on 14 April 2021).
- USA FDA. Statement from FDA Commissioner Scott. Gottlieb, M.D. and Jeff Shuren, M.D., Director of the Center for Devices and Radiological Health, on Efforts to Evaluate Materials in Medical Devices to Address Potential Safety Questions; USA FDA: Rockville, MD, USA, 2019.
- Morais, J.M.; Papadimitrakopoulos, F.; Burgess, D.J. Biomaterials/tissue interactions: Possible solutions to overcome foreign body response. AAPS J. 2010, 12, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Marchant, R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 2011, 8, 607–626. [Google Scholar] [CrossRef] [PubMed]
- Ahearne, M.; Yang, Y.; Liu, K. Mechanical Characterisation of Hydrogels for Tissue Engineering Applications. In Hydroegels for Tissue Engineering; 2008; Volume 4, pp. 1–16. Available online: https://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol4/abstracts/ahearne.pdf (accessed on 14 April 2021).
- Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med. 2019, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2002, 54, 3–12. [Google Scholar] [CrossRef]
- Overstreet, D.J.; Dutta, D.; Stabenfeldt, S.E.; Vernon, B.L. Injectable hydrogels. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 881–903. [Google Scholar] [CrossRef]
- Ceci-Ginistrelli, E.; Pugliese, D.; Boetti, N.G.; Novajra, G.; Ambrosone, A.; Lousteau, J.; Vitale-Brovarone, C.; Abrate, S.; Milanese, D. Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber. Opt. Mater. Express 2016, 6, 2040–2051. [Google Scholar] [CrossRef]
- Beckers, M.; Schlüter, T.; Vad, T.; Gries, T.; Bunge, C.-A.A. An overview on fabrication methods for polymer optical fibers. Polym. Int. 2015, 64, 25–36. [Google Scholar] [CrossRef]
- Woyessa, G.; Fasano, A.; Stefani, A.; Markos, C.; Nielsen, K.; Rasmussen, H.K.; Bang, O. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Opt. Express 2016, 24, 1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebendorff-Heidepriem, H.; Monro, T.M. Extrusion of complex preforms for microstructured optical fibers. Opt. Express 2007, 15, 15086. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, K.; Wang, L.; Ren, L.; Zhao, W.; Miao, R.; Large, M.C.J.; van Eijkelenborg, M.A. Casting preforms for microstructured polymer optical fibre fabrication. Opt. Express 2006, 14, 5541–5547. [Google Scholar] [CrossRef]
- Lian, Z.G.; Tucknott, J.A.; White, N.; Xiao, L.; Feng, X.; Payne, D.N.; Loh, W.H. Technique for fabricating complex structured fibers by rolling of glass preforms. Physics 2011, 1, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Pysz, D.; Kujawa, I.; Stepien, R.; Klimczak, M.; Filipkowski, A.; Franczyk, M.; Kociszewski, L.; Buzniak, J.; Harasny, K.; Buczynski, R. Stack and draw fabrication of soft glass microstructured fiber optics. Bull. Polish Acad. Sci. Tech. Sci. 2014, 62, 667–682. [Google Scholar] [CrossRef]
- Cook, K.; Canning, J.; Leon-Saval, S.; Reid, Z.; Hossain, M.A.; Comatti, J.-E.; Luo, Y.; Peng, G.-D. Air-structured optical fiber drawn from a 3D-printed preform. Opt. Lett. 2015, 40, 3966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, K.; Balle, G.; Canning, J.; Chartier, L.; Athanaze, T.; Hossain, M.A.; Han, C.; Comatti, J.-E.; Luo, Y.; Peng, G.-D. Step-index optical fiber drawn from 3D printed preforms. Opt. Lett. 2016, 41, 4554. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, H.; Wang, Q.; Chen, Q.; Hao, Y. Modified rod-in-tube for high-NA tellurite glass fiber fabrication: Materials and technologies. Appl. Opt. 2015, 54, 946. [Google Scholar] [CrossRef]
- Dupuis, A.; Guo, N.; Gao, Y.; Godbout, N.; Lacroix, S.; Dubois, C.; Skorobogatiy, M. Prospective for biodegradable microstructured optical fibers. Opt. Lett. 2007, 32, 109–111. [Google Scholar] [CrossRef]
- Dupuis, A.; Guo, N.; Gao, Y.; Skorobogata, O.; Gauvreau, B.; Dubois, C.; Skorobogatiy, M. Fabrication strategies and potential applications of the “green” microstructured optical fibers. J. Biomed. Opt. 2008, 13, 054003. [Google Scholar] [CrossRef]
- Dupuis, A.; Guo, N.; Gao, Y.; Gauvreau, B.; Dubois, C.; Skorobogatiy, M. Prospects for “green” microstuctured optical fibers. In Proceedings of the 2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS, San Jose, CA, USA, 4–9 May 2008; pp. 4–5. [Google Scholar]
- Fu, R.; Luo, W.; Nazempour, R.; Tan, D.; Ding, H.; Zhang, K. Implantable and Biodegradable Poly (L-lactic acid) Fibers for Optical Neural Interfaces. Adv. Opt. Mater. 2017, 6, 1700941. [Google Scholar] [CrossRef]
- Gierej, A.; Vagenende, M.; Filipkowski, A.; Siwicki, B.; Buczynski, R.; Thienpont, H.; Van Vlierberghe, S.; Geernaert, T.; Dubruel, P.; Berghmans, F. Poly(D,L-Lactic Acid) (PDLLA) Biodegradable and Biocompatible Polymer Optical Fiber. J. Light. Technol. 2019, 37, 1916–1923. [Google Scholar] [CrossRef]
- Gierej, A.; Filipkowski, A.; Pysz, D.; Buczynski, R.; Vagenende, M.; Dubruel, P.; Thienpont, H.; Geernaert, T.; Berghmans, F. On the Characterization of Novel Step-Index Biocompatible and Biodegradable poly(D,L-lactic acid) Based Optical Fiber. J. Light. Technol. 2020, 38, 1905–1914. [Google Scholar] [CrossRef]
- Shadman, S.; Nguyen-Dang, T.; Das Gupta, T.; Page, A.G.; Richard, I.; Leber, A.; Ruza, J.; Krishnamani, G.; Sorin, F. Microstructured Biodegradable Fibers for Advanced Control Delivery. Adv. Funct. Mater. 2020, 30, 1910283. [Google Scholar] [CrossRef]
- Farajikhah, S.; Runge, A.F.J.; Boumelhem, B.B.; Rukhlenko, I.D.; Stefani, A.; Sayyar, S.; Innis, P.C.; Fraser, S.T.; Fleming, S.; Large, M.C.J. Thermally drawn biodegradable fibers with tailored topography for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 733–743. [Google Scholar] [CrossRef]
- Pugliese, D.; Konstantaki, M.; Konidakis, I.; Ceci-Ginistrelli, E.; Boetti, N.G.; Milanese, D.; Pissadakis, S. Bioresorbable optical fiber Bragg gratings. Opt. Lett. 2018, 43, 671. [Google Scholar] [CrossRef]
- Partus, F.P.; Thomas, G.A. MCVD Method of Making a Low OH Fiber Preform with a Hydrogen-Free Heat Source. U.S. Patent No. 5,397,372, 14 March 1995. [Google Scholar]
- Gallichi-Nottiani, D.; Pugliese, D.; Boetti, N.G.; Milanese, D.; Janner, D. Toward the fabrication of extruded microstructured bioresorbable phosphate glass optical fibers. Int. J. Appl. Glas. Sci. 2020, 11, 632–640. [Google Scholar] [CrossRef]
- Cordeiro, C.M.B.; Ng, A.K.L.; Ebendorff-Heidepriem, H. Ultra-simplified Single-Step Fabrication of Microstructured Optical Fiber. Sci. Rep. 2020, 10, 9678. [Google Scholar] [CrossRef]
- Vaezi, M.; Zhong, G.; Kalami, H.; Yang, S. Extrusion-Based 3D Printing Technologies for 3D Scaffold Engineering. In Functional 3D Tissue Engineering Scaffolds, Materials, Technologies and Applications; Deng, Y., Kuiper, J., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2018; pp. 235–254. ISBN 978-0-08-100979-6. [Google Scholar] [CrossRef]
- Lee, H.; Yoo, J.J.; Kang, H.-W.; Cho, D.-W. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology. Biofabrication 2016, 8, 015011. [Google Scholar] [CrossRef] [PubMed]
- Talataisong, W.; Ismaeel, R.; Sandoghchi, S.R.; Rutirawut, T.; Topley, G.; Beresna, M.; Brambilla, G. Novel method for manufacturing optical fiber: Extrusion and drawing of microstructured polymer optical fibers from a 3D printer. Opt. Express 2018, 26, 32007. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Z.F.; Tam, H.Y.; Tao, X. Multifunctional smart optical fibers: Materials, fabrication, and sensing applications. Photonics 2019, 6, 48. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J.A.; Kaplan, D.L.; Omenetto, F.C. Biocompatible silk printed optical waveguides. Adv. Mater. 2009, 21, 2411–2415. [Google Scholar] [CrossRef]
- Tow, K.H.; Chow, D.M.; Vollrath, F.; Dicaire, I.; Gheysens, T.; Thevenaz, L. Exploring the use of native spider silk as an optical fiber for chemical sensing. J. Light. Technol. 2018, 36, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Zheng, Y.; Bhusari, S.; Villiou, M.; Pearson, S.; Campo, A. Printed Degradable Optical Waveguides for Guiding Light into Tissue. Adv. Funct. Mater. 2020, 30, 2004327. [Google Scholar] [CrossRef]
- Orelma, H.; Hokkanen, A.; Leppänen, I.; Kammiovirta, K.; Kapulainen, M.; Harlin, A.; Leppa, A.H.I. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications. Cellulose 2020, 27, 1543–1553. [Google Scholar] [CrossRef] [Green Version]
- Bise, R.T.; Trevor, D.J. Sol-gel derived microstructured fiber: Fabrication and characterization. Conf. Opt. Fiber Commun. Tech. Dig. Ser. 2005, 3, 269–271. [Google Scholar] [CrossRef]
- Xue, S.C.; Tanner, R.I.; Barton, G.W.; Lwin, R.; Large, M.C.J.; Poladian, L. Fabrication of microstructured optical fibers-part I: Problem formulation and numerical modeling of transient draw process. J. Light. Technol. 2005, 23, 2245–2254. [Google Scholar] [CrossRef]
- Applegate, M.B.; Perotto, G.; Kaplan, D.L.; Omenetto, F.G. Biocompatible silk step-index optical waveguides. Biomed. Opt. Express 2015, 6, 4221–4227. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Qiao, X.; Qian, Z.; Li, J.; Sun, H.; Han, Y.; Xia, X.; Zhou, O.; Wang, C.; Wang, Y.; et al. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding. ACS Appl. Mater. Interfaces 2017, 9, 4665–14676. [Google Scholar] [CrossRef]
- Choi, M.; Humar, M.; Kim, S.; Yun, S.H. Step-Index Optical Fiber Made of Biocompatible Hydrogels. Adv. Mater. 2015, 27, 4081–4086. [Google Scholar] [CrossRef]
- Nizamoglu, S.; Gather, M.C.; Humar, M.; Choi, M.; Kim, S.; Kim, K.S.; Hahn, S.K.; Scarcelli, G.; Randolph, M.; Redmond, R.W.; et al. Bioabsorbable polymer optical waveguides for deep-tissue photomedicine. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Jiang, N.; Yetisen, A.K.; Yuk, H.; Yang, C.; Khademhosseini, A.; Zhao, X.; Yun, S.H. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Adv. Mater. 2016, 28, 10244–10249. [Google Scholar] [CrossRef]
- Shan, D.; Zhang, C.; Kalaba, S.; Mehta, N.; Kim, G.B.; Liu, Z.; Yang, J. Flexible biodegradable citrate-based polymeric step-index optical fiber. Biomaterials 2017, 143, 142–148. [Google Scholar] [CrossRef]
- Fujiwara, E.; Cabral, T.D.; Sato, M.; Oku, H.; Cordeiro, C.M.B. Agarose-based structured optical fibre. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Stähelin, A.C.; Weiler, A.; Rüfenacht, H.; Hoffmann, R.; Geissmann, A.; Feinstein, R. Clinical degradation and biocompatibility of different bioabsorbable interference screws: A report of six cases. Arthroscopy 1997, 13, 238–244. [Google Scholar] [CrossRef]
- Podrazký, O.; Peterka, P.; Kašík, I.; Vytykáčová, S.; Proboštová, J.; Mrázek, J.; Kuneš, M.; Závalová, V.; Radochová, V.; Lyutakov, O.; et al. In-vivo testing of a bioresorbable phosphate-based optical fiber. J. Biophotonics 2019, 12, e201800397. [Google Scholar] [CrossRef]
- Islam, M.T.; Felfel, R.M.; Neel, E.A.A.; Grant, D.M.; Ahmed, I.; Hossain, K.M.Z. Bioactive calcium phosphate–based glasses and ceramics and their biomedical applications: A review. J. Tissue Eng. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Parsons, A.J.; Sharmin, N.; Shaharuddin, S.I.S.; Marshall, M. Viscosity pro fi les of phosphate glasses through combined quasi-static and bob-in-cup methods. J. Non. Cryst. Solids 2015, 408, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.; Ren, H.; Booth, J.; Matthey, J.; Court, B. Developing Unique Geometries of Phosphate- Based Glasses and their Prospective Biomedical Applications. Johns. Matthey Technol. Rev. 2019, 63, 34–42. [Google Scholar] [CrossRef]
- Skutnik, B.J.; Neuberger, W.; Spaniol, S.; Ag, B.; Strasse, W. Optical fibers for improved light delivery in photodynamic therapy and diagnosis. Proc. SPIE 2004, 5315, 1–6. [Google Scholar] [CrossRef]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdi, M.K.; Taghizadeh, A.; Taghizadeh, M.; Stadler, F.J.; Farokhi, M.; Mottaghitalab, F.; Zarrintaj, P.; Ramsey, J.D.; Seidi, F.; Saeb, M.R.; et al. Agarose-based biomaterials for advanced drug delivery. J. Control. Release 2020, 326, 523–543. [Google Scholar] [CrossRef]
- Smith, B.H.; Parikh, T.; Andrada, Z.P.; Fahey, T.J.; Berman, N.; Wiles, M.; Nazarian, A.; Thomas, J.; Arreglado, A.; Akahoho, E.; et al. First-in-Human Phase 1 Trial of Agarose Beads Containing Murine RENCA Cells in Advanced Solid Tumors. Cancer Growth Metastasis 2016, 9, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Hariyadi, D.M.; Islam, N. Current status of alginate in drug delivery. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 8886095. [Google Scholar] [CrossRef]
- Kiiskinen, J.; Merivaara, A.; Hakkarainen, T.; Kääriäinen, M.; Miettinen, S.; Yliperttula, M.; Koivuniemi, R. Nanofibrillar cellulose wound dressing supports the growth and characteristics of human mesenchymal stem/stromal cells without cell adhesion coatings. Stem Cell Res. Ther. 2019, 10, 292. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, N.; Okkelman, I.A.; Timashev, P.; Gromovykh, T.I.; Papkovsky, D.B.; Dmitriev, R.I. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomater. 2018, 80, 85–96. [Google Scholar] [CrossRef]
- Ciolacu, D.E.; Nicu, R.; Ciolacu, F. Cellulose-based hydrogels as sustained drug-delivery systems. Materials 2020, 13, 5270. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-P.; Huang, Y.; Zhang, Y.; Wang, X.-H.; Shao, C.-H. Clinical trial of cellulose in treatment of functional constipation in children. Zhongguo Dang Dai Er Ke Za Zhi 2011, 13, 377–380. [Google Scholar]
- Josling, P.; Steadman, S. Use of cellulose powder for the treatment of seasonal allergic rhinitis. Adv. Ther. 2003, 20, 213–219. [Google Scholar] [CrossRef]
- Thi, T.T.H.; Pilkington, E.H.; Nguyen, D.H.; Lee, J.S.; Park, K.D.; Truong, N.P. The importance of Poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 2020, 12, 298. [Google Scholar] [CrossRef] [Green Version]
- D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 2016, 13, 1257–1275. [Google Scholar] [CrossRef]
- Tavakoli, J.; Tang, Y. Hydrogel based sensors for biomedical applications: An updated review. Polymers 2017, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Escudero-Castellanos, A.; Ocampo-García, B.E.; Domínguez-García, M.V.; Flores-Estrada, J.; Flores-Merino, M.V. Hydrogels based on poly(ethylene glycol) as scaffolds for tissue engineering application: Biocompatibility assessment and effect of the sterilization process. J. Mater. Sci. Mater. Med. 2016, 27, 176. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, D.S.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral Biol. Craniofacial Res. 2020, 10, 381–388. [Google Scholar] [CrossRef]
- Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018, 29, 863–893. [Google Scholar] [CrossRef]
- Christen, M.O.; Vercesi, F. Polycaprolactone: How a well-known and futuristic polymer has become an innovative collagen-stimulator in esthetics. Clin. Cosmet. Investig. Dermatol. 2020, 13, 31–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Shirazi, A.N.; Dehghani, F. Biomedical applications of biodegradable polyesters. Polymers 2016, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Xu, C.; Wu, G.; Ye, Q.; Wang, C. Review poly(lactic-co-glycolic acid): Applications and future prospects for periodontal tissue regeneration. Polymers 2017, 9, 189. [Google Scholar] [CrossRef] [PubMed]
- Virlan, M.J.R.; Miricescu, D.; Totan, A.; Greabu, M.; Tanase, C.; Sabliov, C.M.; Caruntu, C.; Calenic, B. Current uses of poly(lactic-co-glycolic acid) in the dental field: A comprehensive review. J. Chem. 2015, 2015. [Google Scholar] [CrossRef]
- Wilson, B.C.; Patterson, M.S. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 2008, 53, R61–R109. [Google Scholar] [CrossRef] [PubMed]
- Medlight SA. Available online: http://www.medlight.com/pdf/Doc_RD_0801E.pdf (accessed on 12 August 2020).
- La Mattina, A.A.; Mariani, S.; Barillaro, G. Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. Adv. Sci. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, J. Optical Biosensors: An exhaustive and comprehensive review. Analyst 2020, 145, 1605–1628. [Google Scholar] [CrossRef]
- Shin, J.; Liu, Z.; Bai, W.; Liu, Y.; Yan, Y.; Xue, Y.; Kandela, I.; Pezhouh, M.; MacEwan, M.R.; Huang, Y.; et al. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 2019, 5, eaaw1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Yan, B.; Zhang, Q.; Peng, G.D.; Wen, J.; Zhang, J.; Bai, W.; Shin, J.; Fu, R.; Kandela, I.; et al. Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat. Biomed. Eng. 2019, 3, 644–654. [Google Scholar] [CrossRef]
- Wang, L.; Lu, C.; Yang, S.; Sun, P.; Wang, Y.; Guan, Y.; Liu, S.; Cheng, D.; Meng, H.; Wang, Q.; et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 2020, 6, eabc6686. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xin, H.; Zhang, Y.; Li, B. Optical Fiber Technologies for Nanomanipulation and Biodetection: A Review. J. Light. Technol. 2021, 39, 251–262. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Y.; Tong, L. Micro-/Nanofiber Optics: Merging Photonics and Material Science on Nanoscale for Advanced Sensing Technology. iScience 2020, 23, 100810. [Google Scholar] [CrossRef] [Green Version]
Material Type | Material Example | Advantages | Disadvantages |
---|---|---|---|
Natural | Proteins: silk Polysaccharides: alginate, cellulose, agarose | biocompatibility and biodegradability | poor designability, typically limited sources and amount, variability from batch-to-batch, low mechanical strength, can be immunogenic |
Synthetic | Hydrogels: PEG, Pluronic Citrate-based elastomers: poly(octamethylene citrate) (POC), poly(octamethylene maleate citrate) (POMC), Polyesters: poly(L-lactic acid) (PLLA), poly(D,L-lactic acid) (PDLLA), poly(L-lactic-co-glycolic acid) (PLGA), poly(D,L-lactic-co-glycolic acid) (PDLGA), poly-ε-caprolactone (PCL) Inorganic materials: calcium-phosphate glass (PGs) | flexible design, controllable biodegradability, adjustable physical, mechanical and chemical properties | biocompatibility should be verified and confirmed, rigidness and brittleness for glass |
Material Type | Preform Fabrication | Fiber Type | Optical Loss | Reference |
---|---|---|---|---|
CB, HPC | CB commercial tubes filled with HPC powder | Double core porous, diameter: 450 µm | 1.1 dB/cm at 630 nm | [51] |
CA, PLLA | Co-rolling CA commercial film with PLLA cast film | Core-cladding, SI diameter: 860 µm | 9.8 dB/cm at 633 nm | [52] |
CB | CB commercial tubes | Hollow core diameter: 393 µm | 2.2 dB/cm at 633 nm | [52] |
CB, PCL | CB commercial tubes filled with PCL powder | Core-cladding, SI diameter: 420 µm | 6.7 dB/cm at 633 nm | [52] |
CB, PCL | Inserting small diameter CB tube into a larger diameter CB tube and filling the space between with PCL powder | Multiple core, SI diameter: 410 µm | 8.3 dB/cm at 633 nm | [52] |
CB, HPC | Inserting small diameter CB tube into a larger diameter CB tube and filling the space between tubes with HPC powder dissolved in water | Porous cladding, SI diameter: 415 µm | 3.1 dB/cm at 633 nm | [52] |
PLLA PLGA | No preform. Simplified thermal drawing directly from molten powder using glass capillary tubes | Unclad PLLA fibers, Unclad PLGA fibers, diameter: 220 µm | 1.6 dB/cm at 473 nm | [54] |
PDLLA | Melting the PDLLA granulates in form of a homogenous rod | Unclad PDLLA fibers diameter: 600, 300, 200 µm | 0.11 dB/cm at 772 nm 0.17 dB/cm at 636 nm | [55] |
PDLLA, PDLGA | Rod-in tube technique: melting the PDLLA granulates in Teflon® molds in the form of a tube and PDLGA granulates in form of homogenous | Core-cladding, SI fibers, diameter: 1000 ± 50 µm, where core is 570 ± 30 µm | 0.26 dB/cm at 950 nm 0.50 dB/cm at 633 nm | [56] |
PMMA, PLGA, PLGA75 PLGA85 | Rectangular, cylindrical, and multimaterial preforms prepared by hot-pressing a base polymer plate (i.e., PMMA or PLGA) and milling channels along the preforms to be filled with PLGA | Rectangular fibers with channels, Unclad cylindrical fibers | ----- | [57] |
PCL, PLGA85 | PLGA tube fabricated in a hollow core mold in the oven. The mold was taken out and the core was filled with PCL powder, and heated | Core-cladding fibers | ----- | [57] |
PCL | PCL preforms prepared by melting PCL pellets inside polypropylene and Teflon molds of circular, three- and four-leaf cross-sectional shapes at 80 °C for 17 h | Unclad solid-core and grooved fibers; diameter around 700 μm, hollow core with internal diameter 200 μm | 1.5 dB/cm at 635 nm in PBS and 2.5 dB/cm over 21 days of immersion in PBS | [58] |
PGs | Rod-in-tube technique: rod made from a previously drawn thicker rod, and tube made by rotational casting | Core-cladding, SI, MMF Core-cladding, SI, SMF inscribed with FBG | 0.019 dB/cm at 1300 nm 0.047 dB/cm at 633 nm | [41,59] |
PGs | Direct extrusion of outer tube and standard stack-and-draw technique by assembling extruded capillaries within the tube | Microstructured fibers | ----- | [61] |
Material Type | Fabrication Technique | Fiber Type | Optical Loss | Reference |
---|---|---|---|---|
Silk fibroin | direct ink extrusion applied under pressure from aqueous silk solution | unclad silk fibers on glass slides diameter: 5 μm | 0.25 dB/cm at 633 nm | [67] |
Spider silk | native spider silk directly woven by spiders | unclad silk fiber diameter: 5.6 μm | 10 dB/cm at VIS | [68] |
PEGDA(DTT) as core (Pluronic F127-DA) as cladding | extrusion printing technique using a commercial 3D-bioscaffolder, followed by UV photopolymerization | unclad hydrogel-based fibers and core-cladding hydrogel-based fiber diameter: core from 340 to 640 µm and total diameter of 1.02 mm | 0.1 dB/cm at 520 nm and 0.4 dB/cm at 405 nm | [69] |
Regenerated cellulose as core Cellulose acetate as cladding | the regenerated cellulose core was produced from (EMI- M) OAc by using dry-jet wet spinning in water bath as a coagulant. The cladding was produced by coating the cellulose core with cellulose acetate dissolved in acetone. | core-cladding, SI diameter: core: 210 µm, cladding: 3.40 µm | 6.3 dB/cm at 1300 nm, ~ 10 dB/cm in the 750–1350 nm | [70] |
PLA and PLGA | compression molding of polyester powders and laser cut of polymer sheets | planar waveguide | 1.6 dB/cm at 635 nm | [76] |
Silk fibroin and silk hydrogel 1 | silk solution was cast into a mold as a core and dip-coating of core in silk hydrogel solution prior to gelation in a Teflon tube as a cladding | core-cladding diameter: 3 mm | 2 dB/cm at 540 nm | [73] |
Recombinant spider silk protein and regenerative silkworm silk protein | genetically engineered spider silk protein generated by means of biosynthesis. Recombinant spider silk protein was dissolved in hexafluoro-2-propanol at 37 °C overnight, whilst regenerated silkworm silk solution was directly cast into Teflon® tubes with inner diameters of 800 µm. Protein solutions in the molds were heated at 60 °C for 7 days for complete solidification. | unclad fibers diameter: 700 µm | 0.8 dB/cm at 635 nm | [74] |
PEG as core and alginate as cladding | precursor solution for PEG hydrogel was injected into mold tube and photo-crosslinked by UV. The PEG core was dipped multiple times in a sodium alginate and calcium chloride to form cladding | core-cladding, SI, diameter: core: 250–800 µm, cladding 100–150 µm | 0.42 dB/cm at 492 nm | [75] |
PEG | photopolymerization of the precursor solution of PEG by UV | planar waveguides | ---- | [76] |
Ca2+ with Na alginate polyacrylamide (PAAm) hydrogel | precursor solution of acrylamide with Na alginate was injected into a silicone tube mold using a syringe and crosslinked at 50 °C under UV for 30 min. | unclad fibers, diameter | 0.56 dB/cm at 532 nm | [77] |
Ca2+ with Na alginate polyacrylamide (PAAm) hydrogel | precursor solution of acrylamide with Na alginate was injected into a silicone tube mold using a syringe and crosslinked at 50 °C under UV for 30 min. The unclad fiber was dipped in an Na-alginate-polyacrylamide precursor. The clad-coated core fiber cured by UV irradiation for 30 min. Fiber was immersed in an aqueous solution of CaCl2 for ionic cross-linking of alginate by Ca2+ for robustness | core-cladding, SI diameter: 750 μm core and 1100 μm cladding | 0.45 dB/cm at 532 nm | [77] |
POC pre-polymer, citric acid (CA) and 1,8-octanediol (OD) as cladding: POMC pre-polymer, CA, maleic anhydrate (MAn) and OD as core | thermal crosslinking of a pre-polymer cladding material in the form of a tube surrounding metal wire. Air pressure infiltration of liquid POMC into the pre-polymerized POC tube, which followed the thermal crosslinking of both at 70 °C for 7 days. | core-cladding, SI, diameter: 750 μm | 0.4 dB/cm at 633 nm | [78] |
Agarose | boiled agar solution poured into the glass mold tube with rods, cooled down and released after solidification | structured fiber with 6 holes diameters of core: 0.64 mm, cladding: 2.5 mm, and air holes: 0.5 mm | 3.23 dB/cm at 633 nm | [79] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gierej, A.; Geernaert, T.; Van Vlierberghe, S.; Dubruel, P.; Thienpont, H.; Berghmans, F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. Materials 2021, 14, 1972. https://doi.org/10.3390/ma14081972
Gierej A, Geernaert T, Van Vlierberghe S, Dubruel P, Thienpont H, Berghmans F. Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. Materials. 2021; 14(8):1972. https://doi.org/10.3390/ma14081972
Chicago/Turabian StyleGierej, Agnieszka, Thomas Geernaert, Sandra Van Vlierberghe, Peter Dubruel, Hugo Thienpont, and Francis Berghmans. 2021. "Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications" Materials 14, no. 8: 1972. https://doi.org/10.3390/ma14081972
APA StyleGierej, A., Geernaert, T., Van Vlierberghe, S., Dubruel, P., Thienpont, H., & Berghmans, F. (2021). Challenges in the Fabrication of Biodegradable and Implantable Optical Fibers for Biomedical Applications. Materials, 14(8), 1972. https://doi.org/10.3390/ma14081972