The Potential Use of a Thin Film Gold Electrode Modified with Laccases for the Electrochemical Detection of Pyrethroid Metabolite 3-Phenoxybenzaldehyde
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation
2.3. Fabrication of Lac-Au Electrode
2.4. Laccase Enzyme Activity
2.5. Electrochemical Analysis
3. Results and Discussion
3.1. Fabrication of Lac-Au Electrode
3.2. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saillenfait, A.-M.; Ndiaye, D.; Sabaté, J.-P. Pyrethroids: Exposure and health effects—An update. Int. J. Hyg. Environ. Health 2015, 218, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Starr, J.; Graham, S.; Stout, D.; Andrews, K.; Nishioka, M.; Ii, D.S. Pyrethroid pesticides and their metabolites in vacuum cleaner dust collected from homes and day-care centers. Environ. Res. 2008, 108, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Riaz, G.; Tabinda, A.B.; Kashif, M.; Yasar, A.; Mahmood, A.; Rasheed, R.; Khan, M.I.; Iqbal, J.; Siddique, S.; Mahfooz, Y. Monitoring and spatiotemporal variations of pyrethroid insecticides in surface water, sediment, and fish of the river Chenab Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 22584–22597. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cheng, F.; Wei, Y.; Lydy, M.J.; You, J. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. J. Hazard. Mater. 2017, 324, 258–271. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Kaviraj, A. Acute Toxicity of Synthetic Pyrethroid Cypermethrin to Some Freshwater Organisms. Bull. Environ. Contam. Toxicol. 2007, 80, 49–52. [Google Scholar] [CrossRef]
- Beggel, S.; Connon, R.; Werner, I.; Geist, J. Changes in gene transcription and whole organism responses in larval fathead minnow (Pimephales promelas) following short-term exposure to the synthetic pyrethroid bifenthrin. Aquat. Toxicol. 2011, 105, 180–188. [Google Scholar] [CrossRef]
- Larson, J.L.; Redmond, C.T.; Potter, D.A. Impacts of a neonicotinoid, neonicotinoid–pyrethroid premix, and anthranilic diamide insecticide on four species of turf-inhabiting beneficial insects. Ecotoxicology 2014, 23, 252–259. [Google Scholar] [CrossRef]
- Johnson, R.M.; Wen, Z.; Schuler, M.A.; Berenbaum, M.R. Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases. J. Econ. Entomol. 2006, 99, 1046–1050. [Google Scholar] [CrossRef]
- Davies, T.G.E.; Field, L.M.; Usherwood, P.N.R.; Williamson, M.S. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life 2007, 59, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Skolarczyk, J.; Pekar, J.; Nieradko-Iwanicka, B. Immune disorders induced by exposure to pyrethroid insecticides. Postępy Higieny i Medycyny Doświadczalnej 2017, 71, 446–453. [Google Scholar] [CrossRef]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.M.; Patterson, D.R.; Van Gelder, G.A.; Gordon, E.B.; Valerio, M.G.; Hall, W.C. Chronic Toxicity and Carcinogenicity Evaluation of Fenvalerate in Rats. J. Toxicol. Environ. Health 1984, 13, 83–97. [Google Scholar] [CrossRef]
- Zepeda-Arce, R.; Rojas-García, A.E.; Benitez-Trinidad, A.; Herrera-Moreno, J.F.; Medina-Díaz, I.M.; Barrón-Vivanco, B.S.; Villegas, G.P.; Hernández-Ochoa, I.; Heredia, M.D.J.S.; Bernal-Hernández, Y.Y. Oxidative stress and genetic damage among workers exposed primarily to organophosphate and pyrethroid pesticides. Environ. Toxicol. 2017, 32, 1754–1764. [Google Scholar] [CrossRef]
- Riangrungroj, P.; Bever, C.S.; Hammock, B.D.; Polizzi, K.M. A label-free optical whole-cell Escherichia coli biosensor for the detection of pyrethroid insecticide exposure. Sci. Rep. 2019, 9, 12466. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Hu, Q.; Hu, M.; Luo, J.; Weng, Q.; Lai, K. Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresour. Technol. 2011, 102, 8110–8116. [Google Scholar] [CrossRef]
- Xie, W.-J.; Zhou, J.-M.; Wang, H.-Y.; Chen, X.-Q. Effect of Nitrogen on the Degradation of Cypermethrin and Its Metabolite 3-Phenoxybenzoic Acid in Soil. Pedosphere 2008, 18, 638–644. [Google Scholar] [CrossRef]
- Chen, S.; Geng, P.; Xiao, Y.; Hu, M. Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl. Microbiol. Biotechnol. 2012, 94, 505–515. [Google Scholar] [CrossRef]
- Nishi, K.; Huang, H.; Kamita, S.G.; Kim, I.-H.; Morisseau, C.; Hammock, B.D. Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2. Arch. Biochem. Biophys. 2006, 445, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.K.; Macmillan, D.K.; Zehr, D.; Sobus, J.R. Pyrethroid insecticides and their environmental degradates in repeated duplicate-diet solid food samples of 50 adults. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shen, L.; Gong, Z.; Pan, J.; Zheng, X.; Xue, J. Analytical methods to analyze pesticides and herbicides. Water Environ. Res. 2019, 91, 1009–1024. [Google Scholar] [CrossRef] [Green Version]
- El-Saeid, M.H.; Khan, H.A. Determination of Pyrethroid Insecticides in Crude and Canned Vegetable Samples by Supercritical Fluid Chromatography. Int. J. Food Prop. 2014, 18, 1119–1127. [Google Scholar] [CrossRef]
- Ye, T.; Yin, W.; Zhu, N.; Yuan, M.; Cao, H.; Yu, J.; Gou, Z.; Wang, X.; Zhu, H.; Reyihanguli, A.; et al. Colorimetric detection of pyrethroid metabolite by using surface molecularly imprinted polymer. Sens. Actuators B Chem. 2018, 254, 417–423. [Google Scholar] [CrossRef]
- Ahn, K.C.; Gee, S.J.; Kim, H.-J.; Aronov, P.A.; Vega, H.; Krieger, R.I.; Hammock, B.D. Immunochemical analysis of 3-phenoxybenzoic acid, a biomarker of forestry worker exposure to pyrethroid insecticides. Anal. Bioanal. Chem. 2011, 401, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Nichkova, M.; Dosev, D.; Gee, S.J.; Hammock, A.B.D.; Kennedy, I.M. Microarray Immunoassay for Phenoxybenzoic Acid Using Polymer Encapsulated Eu:Gd2O3Nanoparticles as Fluorescent Labels. Anal. Chem. 2005, 77, 6864–6873. [Google Scholar] [CrossRef]
- Vicentini, F.C.; Garcia, L.L.; Figueiredo-Filho, L.C.; Janegitz, B.C.; Fatibello-Filho, O. A biosensor based on gold nanoparticles, dihexadecylphosphate, and tyrosinase for the determination of catechol in natural water. Enzym. Microb. Technol. 2016, 84, 17–23. [Google Scholar] [CrossRef]
- Thurston, C.F. The structure and function of fungal laccases. Microbiology 1994, 140, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Bollag, J.M. Decontaminating soil with enzymes. Environ. Sci. Technol. 1992, 26, 1876–1881. [Google Scholar] [CrossRef]
- Sondhi, S.; Sharma, P.; George, N.; Chauhan, P.S.; Puri, N.; Gupta, N. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp. 3 Biotech 2014, 5, 175–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaconu, M.; Litescu, S.C.; Radu, G.L. Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants. Sens. Actuators B Chem. 2010, 145, 800–806. [Google Scholar] [CrossRef]
- Moss, P. Enzyme Nomenclature; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Gangola, S.; Sharma, A.; Bhatt, P.; Khati, P.; Chaudhary, P. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Sci. Rep. 2018, 8, 12755. [Google Scholar] [CrossRef] [PubMed]
- Mir-Tutusaus, J.A.; Masís-Mora, M.; Corcellas, C.; Eljarrat, E.; Barceló, D.; Sarrà, M.; Caminal, G.; Vicent, T.; Rodríguez-Rodríguez, C.E. Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Sci. Total Environ. 2014, 500–501, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Chen, X.; Jia, D.; Yao, K. Identification of fungal enzymes involving 3-phenoxybenzoic acid degradation by using enzymes inhibitors and inducers. MethodsX 2020, 7, 100772. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Renedo, O.; Alonso-Lomillo, M.A.; Recio-Cebrián, P.; Arcos-Martínez, M.J. Screen-printed acetylcholinesterase-based biosensors for inhibitive determination of permethrin. Sci. Total Environ. 2012, 426, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Luna-Moreno, D.; Sánchez-Álvarez, A.; Islas-Flores, I.; Canto-Canche, B.; Carrillo-Pech, M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M. Early Detection of the Fungal Banana Black Sigatoka Pathogen Pseudocercospora fijiensis by an SPR Immunosensor Method. Sensors 2019, 19, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Liu, J.; Fan, J.; Wang, Z.; Li, L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Anal. Chim. Acta 2018, 1009, 65–72. [Google Scholar] [CrossRef]
- Wang, B.; Cheng, F.; Lu, Y.; Ge, W.; Zhang, M.; Yue, B. Immobilization of pectinase from Penicillium oxalicum F67 onto magnetic cornstarch microspheres: Characterization and application in juice production. J. Mol. Catal. B Enzym. 2013, 97, 137–143. [Google Scholar] [CrossRef]
- Addorisio, V.; Sannino, F.; Mateo, C.; Guisan, J.M. Oxidation of phenyl compounds using strongly stable immobilized-stabilized laccase from Trametes versicolor. Process. Biochem. 2013, 48, 1174–1180. [Google Scholar] [CrossRef]
- Liley, M.; Keller, T.A.; Duschl, C.; Vogel, H. Direct Observation of Self-Assembled Monolayers, Ion Complexation, and Protein Conformation at the Gold/Water Interface: An FTIR Spectroscopic Approach. Langmuir 1997, 13, 4190–4192. [Google Scholar] [CrossRef]
- Schartner, J.; Güldenhaupt, J.; Mei, B.; Rögner, M.; Muhler, M.; Gerwert, K.; Kötting, C. Universal Method for Protein Immobilization on Chemically Functionalized Germanium Investigated by ATR-FTIR Difference Spectroscopy. J. Am. Chem. Soc. 2013, 135, 4079–4087. [Google Scholar] [CrossRef]
- Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [Google Scholar] [CrossRef]
- Talbert, J.N.; Goddard, J.M. Enzymes on material surfaces. Colloids Surfaces B Biointerfaces 2012, 93, 8–19. [Google Scholar] [CrossRef]
- Fan, X.; Liang, W.; Li, Y.; Li, H.; Liu, X. Identification and immobilization of a novel cold-adapted esterase, and its potential for bioremediation of pyrethroid-contaminated vegetables. Microb. Cell Factories 2017, 16, 149. [Google Scholar] [CrossRef]
- Tu, X.; Xie, Y.; Ma, X.; Gao, F.; Gong, L.; Wang, D.; Lu, L.; Liu, G.; Yu, Y.; Huang, X. Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen. J. Electroanal. Chem. 2019, 848, 113268. [Google Scholar] [CrossRef]
- Galletti, P.; Pori, M.; Funiciello, F.; Soldati, R.; Ballardini, A.; Giacomini, D. Laccase-Mediator System for Alcohol Oxidation to Carbonyls or Carboxylic Acids: Toward a Sustainable Synthesis of Profens. ChemSusChem 2014, 7, 2684–2689. [Google Scholar] [CrossRef]
- Pandey, V.; Chauhan, A.; Pandey, G.; Mudiam, M.K.R. Optical sensing of 3-phenoxybenzoic acid as a pyrethroid pesticides exposure marker by surface imprinting polymer capped on manganese-doped zinc sulfide quantum dots. Anal. Chem. Res. 2015, 5, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, A.; Hu, J.; Lin, M.; Wen, M.; Zhang, X.; Xu, C.; Hu, X.; Zhong, J.; Jiao, L.; et al. Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay. Anal. Biochem. 2015, 483, 7–11. [Google Scholar] [CrossRef]
Electrode | Rel (Ω) | Rct (Ω) | Cdl (F) | W (S·*√s) |
---|---|---|---|---|
Bare Au | 20 | 100 | 4.5 × 10−9 | 0.0012 |
Lac-Au | 30 | 112 | 5.0 × 10−9 | 0.0015 |
Strategies | Element of Recognition | Analyte | Limit of Detection (µM) | Reference |
---|---|---|---|---|
Colorimetric | Molecularly imprinted polymers | 3-PBD | 0.262 | [22] |
Electrochemical | Laccase enzyme | 3-PBD | 0.061 | This work |
Photoluminescence | Mn-doped ZnS quantum dots | 3-PBA | 0.117 | [46] |
Microarray immunoassay | antibodies | 3-PBA | 0.007 | [24] |
Colloidal gold-based lateral flow immunoassay | antibodies | 3-PBA | 5.04 | [47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esquivel-Blanco, V.A.; Quintanilla-Villanueva, G.E.; Villarreal-Chiu , J.F.; Rodríguez-Delgado, J.M.; Rodríguez-Delgado, M.M. The Potential Use of a Thin Film Gold Electrode Modified with Laccases for the Electrochemical Detection of Pyrethroid Metabolite 3-Phenoxybenzaldehyde. Materials 2021, 14, 1992. https://doi.org/10.3390/ma14081992
Esquivel-Blanco VA, Quintanilla-Villanueva GE, Villarreal-Chiu JF, Rodríguez-Delgado JM, Rodríguez-Delgado MM. The Potential Use of a Thin Film Gold Electrode Modified with Laccases for the Electrochemical Detection of Pyrethroid Metabolite 3-Phenoxybenzaldehyde. Materials. 2021; 14(8):1992. https://doi.org/10.3390/ma14081992
Chicago/Turabian StyleEsquivel-Blanco, Verónica Aglaeé, Gabriela Elizabeth Quintanilla-Villanueva, Juan Francisco Villarreal-Chiu , José Manuel Rodríguez-Delgado, and Melissa Marlene Rodríguez-Delgado. 2021. "The Potential Use of a Thin Film Gold Electrode Modified with Laccases for the Electrochemical Detection of Pyrethroid Metabolite 3-Phenoxybenzaldehyde" Materials 14, no. 8: 1992. https://doi.org/10.3390/ma14081992
APA StyleEsquivel-Blanco, V. A., Quintanilla-Villanueva, G. E., Villarreal-Chiu , J. F., Rodríguez-Delgado, J. M., & Rodríguez-Delgado, M. M. (2021). The Potential Use of a Thin Film Gold Electrode Modified with Laccases for the Electrochemical Detection of Pyrethroid Metabolite 3-Phenoxybenzaldehyde. Materials, 14(8), 1992. https://doi.org/10.3390/ma14081992