An Electrochemical and Spectroscopic Study of Surfaces on Bronze Sculptures Exposed to Urban Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sculpture Nedovršena igra (Author Gabrijela Kolar—1965)
NI1 | NI2 | NI3 | NI4 | Cu2O [8,37,38] | Cu2S [37,38] | Malachite [32,37] | Azurite [32] | Brochantite [36] | Atacamite [39] |
---|---|---|---|---|---|---|---|---|---|
87 | 88 (s) | ||||||||
148 | 144 | 153 | 142 | 144 | 141 | ||||
203 | 205 | 215 | 194 | ||||||
226 | 220 | 236 | |||||||
276 (s) | 280 (s) | 281 | 281 | 271 | |||||
306 | 309 | ||||||||
398 (w) | 397 (w) | 398 | 363 | ||||||
410 (w) | 414 | 415 | 422 | ||||||
465 (w) | 472 | 467 | |||||||
523 | 523 (s) | 523 | 531 | 540 | 517 | ||||
608 (s) | 608 (s) | 628 | 603 | 608 | |||||
702 | 717 | ||||||||
986 | 990 | 976 | |||||||
1083 (s) | 1096 | 1095 | |||||||
1344 (s) | 1364 | 1415 | |||||||
1582 (s) | 1576 | ||||||||
3615 (vw) | |||||||||
3622 (vw) |
3.2. Sculpture at Memorial Child Cemetery (MC) (Author Milena Lah—1974)
3.3. Electrochemical Impedance Spectroscopy Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graedel, T.E.; Nassau, K.; Franey, J.P. Copper patinas formed in the atmosphere—I. Introduction. Corros. Sci. 1987, 27, 639–657. [Google Scholar] [CrossRef]
- Krätschmer, A.; Odnevall Wallinder, I.; Leygraf, C. The evolution of outdoor copper patina. Corros. Sci. 2002, 44, 425–450. [Google Scholar] [CrossRef]
- FitzGerald, K.P.; Nairn, J.; Skennerton, G.; Atrens, A. Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper. Corros. Sci. 2006, 48, 2480–2509. [Google Scholar] [CrossRef]
- Kammlott, G.W.; Franey, J.P.; Graedel, T.E. Atmospheric sulfidation of copper alloys I. Brasses and bronzes. J. Electrochem. Soc. 1984, 131, 505–511. [Google Scholar] [CrossRef]
- Strandberg, H.; Johansson, L.-G. The formation of black patina on copper in humid air containing traces of SO2. J. Electrochem. Soc. 1997, 144, 81–89. [Google Scholar] [CrossRef]
- Mariaca, L.; de la Fuente, D.; Feliu, S., Jr.; Simancas, J.; González, J.A.; Morcillo, M. Interaction of copper and NO2: Effect of joint presence of SO2, relative humidity and temperature. J. Phys. Chem. Solids 2008, 69, 895–904. [Google Scholar] [CrossRef] [Green Version]
- Aastrup, T.; Wadsak, M.; Leygraf, C.; Schreiner, M. In situ studies of the initial atmospheric corrosion of copper. Influence of humidity, sulfur dioxide, ozone, and nitrogen dioxide. J. Electrochem. Soc. 2000, 147, 2543–2551. [Google Scholar] [CrossRef]
- Masi, G.; Esvan, J.; Josse, C.; Chiavari, C.; Bernardi, E.; Martini, C.; Bignozzi, M.C.; Gartner, N.; Kosec, T.; Robbiola, L. Characterization of typical patinas simulating bronze corrosion in outdoor conditions. Mater. Chem. Phys. 2017, 200, 308–321. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, E.; Chiavari, C.; Lenza, B.; Martini, C.; Morselli, L.; Ospitali, F.; Robbiola, L. The atmospheric corrosion of quaternary bronzes: The leaching action of acid rain. Corros. Sci. 2009, 51, 159–170. [Google Scholar] [CrossRef]
- De la Fuente, D.; Simancas, J.; Morcillo, M. Morphological study of 16-year patinas formed on copper in a wide range of atmospheric exposures. Corros. Sci. 2008, 50, 268–285. [Google Scholar] [CrossRef]
- Chang, T.; Herting, G.; Goidanich, S.; María Sánchez Amaya, J.; Arenas, M.A.; Le Bozec, N.; Jin, Y.; Leygraf, C. The role of Sn on the long-term atmospheric corrosion of binary Cu-Sn bronze alloys in architecture. Corros. Sci. 2019, 149, 54–67. [Google Scholar] [CrossRef]
- Chang, T.; Odnevall Wallinder, I.; de la Fuente, D.; Chico, B.; Morcillo, M.; Welter, J.-M.; Leygraf, C. Analysis of historic copper patinas. Influence of inclusions on patina uniformity. Materials 2017, 10, 298. [Google Scholar] [CrossRef] [Green Version]
- Morcillo, M.; Chang, T.; Chico, B.; de la Fuente, D.; Odnevall Wallinder, I.; Jiménez, J.A.; Leygraf, C. Characterisation of a centuries-old patinated copper roof tile from Queen Anne’s Summer Palace in Prague. Mater. Charact. 2017, 133, 146–155. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Donnici, M.; Álvarez-Romero, C.; Daniele, S.; Doménech-Carbó, M.T. Multiple-scan voltammetry of immobilized particles of ancient copper/bronze coins. J. Solid State Electr. 2020, 25, 195–206. [Google Scholar] [CrossRef]
- Doménech-Carbó, A.; Ramírez-Barat, B.; Petiti, C.; Goidanich, S.; Doménech-Carbó, M.T.; Cano, E. Characterization of traditional artificial patinas on copper using the voltammetry of immobilized particles. J. Electroanal. Chem. 2020, 877, 114494–114498. [Google Scholar] [CrossRef]
- Šatović, D.; Martinez, S.; Bobrowski, A. Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta 2010, 81, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Serghini-Idrissi, M.; Bernard, M.C.; Harrif, F.Z.; Joiret, S.; Rahmounib, K.; Srhiri, A.; Takenouti, H.; Vivier, V.; Ziani, M. Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochim. Acta 2005, 50, 4699–4709. [Google Scholar] [CrossRef]
- Chiavari, C.; Rahmouni, K.; Takenouti, H.; Joiret, S.; Vermaut, P.; Robbiola, L. Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim. Acta 2007, 52, 7760–7769. [Google Scholar] [CrossRef]
- Ramírez Barat, B.; Cano, E. In situ electrochemical impedance spectroscopy measurements and their interpretation for the diagnostic of metallic cultural heritage: A review. ChemElectroChem 2018, 5, 2698–2716. [Google Scholar] [CrossRef]
- Letardi, P. Laboratory and field tests on patinas and protective coating systems for outdoor bronze monuments. In Proceedings of the Metal 2004, Canberra, Australia, 4–8 October 2004. [Google Scholar]
- Ramírez Barat, B.; Cano, E.; Letardi, P. Advances in the design of a gel-cell electrochemical sensor for corrosion measurements on metallic cultural heritage. Sens. Actuators B 2018, 261, 572–580. [Google Scholar] [CrossRef]
- Monrrabal, G.; Guzmán, S.; Hamilton, I.E.; Bautista, A.; Velasco, F. Design of gel electrolytes for electrochemical studies on metal surfaces with complex geometry. Electrochim. Acta 2016, 220, 20–28. [Google Scholar] [CrossRef]
- Di Turo, F.; De Vito, C.; Coletti, F.; Mazzei, F.; Antiochia, R.; Favero, G. A multi-analytical approach for the validation of a jellified electrolyte: Application to the study of ancient bronze patina. Microchem. J. 2017, 134, 154–163. [Google Scholar] [CrossRef]
- Monrrabal, G.; Huet, F.; Bautista, A. Electrochemical noise measurements on stainless steel using a gelled electrolyte. Corros. Sci. 2019, 148, 48–56. [Google Scholar] [CrossRef]
- Di Turo, F.; Matricardi, P.; Di Meo, C.; Mazzei, F.; Favero, G.; Zane, D. PVA hydrogel as polymer electrolyte for electrochemical impedance analysis on archaeological metals. J. Cult. Herit. 2019, 37, 113–120. [Google Scholar] [CrossRef]
- Vađić, V. 1. Izvještaj o Stanju Zraka u Republici Hrvatskoj s Ciljem Uspostave Informacijskog Sustava Zaštite Okoliša Republike Hrvatske, IMI, Zagreb. 2005. Available online: http://iszz.azo.hr/iskzl/godizvrpt.htm?pid=0&t=0 (accessed on 28 February 2021).
- Kreislova, K.; Geiplova, H. Prediction of the long-term corrosion rate of copper alloy objects. Mater. Corros. 2016, 67, 152–159. [Google Scholar] [CrossRef]
- Robotti, S.; Rizzi, P.; Soffritti, C.; Garagnani, G.L.; Greco, C.; Facchetti, F.; Borla, M.; Operti, L.; Agostino, A. Reliability of portable X-ray Fluorescence for the chemical characterisation of ancient corroded copper-tin alloys. Spectrochim. Acta B 2018, 146, 41–49. [Google Scholar] [CrossRef]
- Šatović, D.; Desnica, V.; Fazinić, S. Use of portable X-ray fluorescence instrument for bulk alloy analysis on low corroded indoor bronzes. Spectrochim. Acta B 2013, 89, 7–13. [Google Scholar] [CrossRef]
- Schweitzer, P.A. Fundamentals of Metallic Corrosion: Atmospheric and Media Corrosion of Metals, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA; London, UK, 2007. [Google Scholar]
- Dufresne, W.J.B.; Rufledt, C.J.; Marshall, C.P. Raman spectroscopy of the eight natural carbonate minerals of calcite structure. J. Raman Spectrosc. 2018, 49, 1999–2007. [Google Scholar] [CrossRef]
- Frost, R.L.; Martens, W.N.; Rintoul, L.; Mahmutagic, E.; Kloprogge, J.T. Raman spectroscopic study of azurite and malachite at 298 and 77 K. J. Raman Spectrosc. 2002, 33, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Marušić, K.; Otmačić Ćurković, H.; Horvat-Kurbegović, Š.; Takenouti, H.; Stupnišek-Lisac, E. Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor. Electrochim. Acta 2009, 54, 7106–7113. [Google Scholar] [CrossRef]
- Chukanov, N.V. Infrared Spectra of Mineral Specie; Springer: New York, NY, USA; London, UK, 2014. [Google Scholar]
- Robbiola, L.; Fiaud, C.; Pennec, S. New model of outdoor bronze corrosion and its implications for conservation, ICOM Comittee for Conservation. In Proceedings of the 10th Triennial Meeting, Washington, DC, USA, 22–27 August 1993; Volume 2, pp. 796–802. [Google Scholar]
- Martens, W.; Frost, R.L.; Kloprogge, J.T.; Williams, P.A. Raman spectroscopic study of the basic copper sulphates—Implications for copper corrosion and ‘bronze disease’. J. Raman Spectrosc. 2003, 34, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Mc Cann, L.I.; Trentelman, K.; Possley, T.; Golding, B. Corrosion of Ancient Chinese Bronze Money Trees Studied by Raman Microscopy. J. Raman Spectrosc. 1999, 30, 121–132. [Google Scholar] [CrossRef]
- Colomban, P.; Tournie, A.; Maucuer, M.; Meynard, P. On-site Raman and XRF analysis of Japanese/Chinese bronze/brass patina—The search for specific Raman signatures. J. Raman Spectrosc. 2012, 43, 799–808. [Google Scholar] [CrossRef]
- Hayez, V.; Costa, V.; Guillaume, J.; Terryn, H.; Hubin, A. Micro Raman spectroscopy used for the study of corrosion products on copper alloys: Study of the chemical composition of artificial patinas used for restoration purposes. Analyst 2005, 130, 550–556. [Google Scholar] [CrossRef]
- Catelli, E.; Sciutto, G.; Prati, S.; Jia, Y.; Mazzeo, R. Characterization of outdoor bronze monument patinas: The potentialities of near-infrared spectroscopic analysis. Environ. Sci. Pollut. Res. 2018, 25, 24379–24393. [Google Scholar] [CrossRef] [PubMed]
- Coccato, A.; Bersani, D.; Coudray, A.; Sanyova, J.; Moens, L.; Vandenabeele, P. Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. J. Raman Spectrosc. 2016, 47, 1429–1443. [Google Scholar] [CrossRef]
- Ropret, P.; Kosec, T. Raman investigation of artificial patinas on recent bronze—Part I: Climatic chamber exposure. J. Raman Spectrosc. 2012, 43, 1578–1586. [Google Scholar] [CrossRef]
- Secco, E.A. Spectroscopic properties of SO4 (and OH) in different molecular and crystalline environments. I. Infrared spectra of Cu4(OH)6SO4, Cu4(OH)4OSO4, and Cu3(OH)4SO4. Can. J. Chem. 1988, 66, 329–336. [Google Scholar] [CrossRef]
- Letardi, P.; Luciano, G. Survey of EIS measurements on copper and bronze patinas. In Proceedings of the International Conference on Metals Conservation, METAL 07, Amsterdam, The Netherland, 17–21 September 2007. [Google Scholar]
- Ramírez Barat, B.; Crespo, A.; García, E.; Díaz, S.; Cano, E. An EIS study of the conservation treatment of the bronze sphinxes at the Museo Arqueológico Nacional (Madrid). J. Cult. Herit. 2016, 24, 93–99. [Google Scholar] [CrossRef]
- Vera, R.; Araya, R.; Bagnara, M.; Diaz-Gómez, A.; Ossandón, S. Atmospheric corrosion of copper exposed to different environments in the region of Valparaiso, Chile. Mater. Corros. 2017, 68, 316–328. [Google Scholar] [CrossRef]
- Sandberg, J.; Odnevall Wallinder, I.; Leygraf, C.; Le Bozec, N. Corrosion-induced copper runoff from naturally and pre-patinated copper in a marine environment. Corros. Sci. 2006, 48, 4316–4338. [Google Scholar] [CrossRef]
- Marušić, K.; Otmačić Ćurković, H.; Takenouti, H. Inhibiting effect of 4-methyl-1-p-tolylimidazole to the corrosion of bronze patinated in sulphate medium. Electrochim. Acta 2011, 56, 7491–7502. [Google Scholar] [CrossRef]
- Otmačić Ćurković, H.; Kosec, T.; Marušić, K.; Legat, A. An electrochemical impedance study of the corrosion protection of artificially formed patinas on recent bronze. Electrochim. Acta 2012, 83, 28–39. [Google Scholar] [CrossRef]
Area/Composition wt % | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Cu | 71.7 | 69.0 | 65.9 | 68.5 |
Pb | 9.9 | 8.7 | 7.1 | 9.6 |
Sn | 8.9 | 10.0 | 10.4 | 8.1 |
Zn | 7.4 | 3.9 | 4.4 | 6.4 |
Fe | 1.6 | 1.2 | 1.8 | 1.4 |
Al | - | 6.4 | 9.5 | 5.3 |
Sb | 0.3 | 0.4 | 0.5 | 0.4 |
Area/Composition wt % | 1 | 2 | 3 |
---|---|---|---|
Cu | 75.8 | 76.1 | 71.1 |
Pb | 1.4 | 2.3 | 1.3 |
Sn | 8.7 | 9.7 | 10.6 |
Zn | 3.7 | 4.4 | 4.3 |
Fe | 2.4 | 4.0 | 6.3 |
Al | 7.6 | 3.1 | 6.7 |
Ni | 0.1 | 0.1 | 0.1 |
Point 1 (a) | Point 2 (b) | Point 3 (c) | Langite [36] | Posnjakite [36] |
---|---|---|---|---|
191 (w) | 191 (w) | 194 | 195 | |
246 (w) | 246 (w) | 241 | 241 | |
386 (w) | 386 (w) | 391 | 386 | |
479 (w) | 479 (w) | 481 | 482 | |
610 (w) | 610 (w) | 609 | 609 | |
974 (s) | 974 (s) | 974 | 972 | |
1102 (w) | 1102 (w) | 1102 | 1105 | |
1359 (s) | 1359 (s) | 1359 (s) | ||
1598 (s) | 1598 (s) | 1598 (s) | ||
3402 (w) | 3402 (w) | 3405 | 3405 | |
3586 (w) | 3586 (w) | 3587 | 3588 |
Sample | R1/kΩ cm2 | Q1/μS sn cm−2 | n1 | R2/kΩ cm2 | Q2/μS sn cm−2 | n2 |
---|---|---|---|---|---|---|
NI1 | 6.69 | 3.31 | 0.55 | 146 | 1.04 | 0.75 |
NI2 | 1.97 | 2.71 | 0.84 | 60.2 | 3.02 | 0.91 |
NI4 | 1.59 | 2.83 | 0.56 | 105 | 31.0 | 0.50 |
Sample | R1/kΩ cm2 | Q1/μS sn cm−2 | n1 | R2/kΩ cm2 | Q2/μS sn cm−2 | n2 | R3/kΩ cm2 | Q3/μS sn cm−2 | n3 |
---|---|---|---|---|---|---|---|---|---|
MC2 | 0.19 | 12.5 | 0.51 | 2.69 | 98.5 | 0.76 | 63.7 | 98.4 | 0.42 |
MC3 | 0.47 | 3.25 | 0.51 | 1.01 | 3.69 | 0.55 | 76.3 | 129 | 0.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikić, D.; Otmačić Ćurković, H.; Kosec, T.; Peko, N. An Electrochemical and Spectroscopic Study of Surfaces on Bronze Sculptures Exposed to Urban Environment. Materials 2021, 14, 2063. https://doi.org/10.3390/ma14082063
Mikić D, Otmačić Ćurković H, Kosec T, Peko N. An Electrochemical and Spectroscopic Study of Surfaces on Bronze Sculptures Exposed to Urban Environment. Materials. 2021; 14(8):2063. https://doi.org/10.3390/ma14082063
Chicago/Turabian StyleMikić, Dajana, Helena Otmačić Ćurković, Tadeja Kosec, and Neven Peko. 2021. "An Electrochemical and Spectroscopic Study of Surfaces on Bronze Sculptures Exposed to Urban Environment" Materials 14, no. 8: 2063. https://doi.org/10.3390/ma14082063
APA StyleMikić, D., Otmačić Ćurković, H., Kosec, T., & Peko, N. (2021). An Electrochemical and Spectroscopic Study of Surfaces on Bronze Sculptures Exposed to Urban Environment. Materials, 14(8), 2063. https://doi.org/10.3390/ma14082063