Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoscale Measurements
2.3. Macroscale Measurements
2.4. X-ray Photoelectron Spectroscopy
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baur, J.; Silverman, E. Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull. 2007, 32, 328–334. [Google Scholar] [CrossRef]
- Tans, S.J.; Devoret, M.H.; Dai, H.; Thess, A.; Smalley, R.E.; Geerligs, L.J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386, 474–477. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.S.; Chou, T. Carbon nanotube fibers for advanced composites. Mater. Today 2012, 15, 302–310. [Google Scholar] [CrossRef]
- Barron, A.R.; Khan, M.R. Carbon nanomaterials: Opportunities and challenges. Adv. Mater. Process. 2008, 166, 41–43. [Google Scholar]
- Lu, W.; Zu, M.; Byun, J.; Kim, B.; Chou, T. State of the art of carbon nanotube fibers: Opportunities and challenges. Adv. Mater. 2012, 24, 1805–1833. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wang, D.Z.; Ren, Z.F. Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 2006, 44, 969–973. [Google Scholar] [CrossRef]
- Jiang, K.; Qunqing, L.; Fan, S. Spinning continuous carbon nanotube yarns. Nature 2002, 419, 1274014. [Google Scholar] [CrossRef]
- Zhang, M.; Atkinson, K.R.; Baughman, R.H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kinloch, I.A.; Windle, A.H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–279. [Google Scholar] [CrossRef]
- Zhu, H.W.; Xu, C.L.; Wu, D.H.; Wei, B.Q.; Vajtal, R.; Ajayan, P.M. Direct synthesis of long single-walled carbon nanotube strands. Science 2002, 296, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-H.; Park, J.H.; Kim, S.M. Synthesis, property, and application of carbon nanotube fiber. J. Korean Ceram. Soc. 2021, 58, 148–159. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.; Jung, Y.; Park, J.; Lee, H.S.; Kim, Y.; Park, C.R.; Jeong, H.S.; Kim, S.M. Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun. 2019, 10, 2962. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.S.; Nie, X.; Hudspeth, M.C.; Chen, W.W.; Chou, T.-W.; Lashmore, D.S.; Schauer, M.W.; Tolle, E.; Rioux, J. Strain rate-dependent tensile properties and dynamic electromechanical response of carbon nanotube fibers. Carbon 2012, 50, 3876–3881. [Google Scholar] [CrossRef]
- Wu, A.S.; Chou, T.-W.; Gillespie, J.W., Jr.; Lashmore, D.S.; Rioux, J. Electromechanical response and failure behaviour of aerogel-spun carbon nanotube fibers under tensile loading. J. Mater. Chem. 2012, 22, 6792–6798. [Google Scholar] [CrossRef]
- Gangoli, V.S.; Raja, P.M.V.; Esquenazi, G.L.; Barron, A.R. The safe handling of bulk low-density nanomaterials. SN Appl. Sci. 2019, 1, 644. [Google Scholar] [CrossRef] [Green Version]
- Barnett, C.J.; Gowenlock, C.E.; Welsby, K.; White, A.O.; Barron, A.R. Spatial and contamination-dependent electrical properties of carbon nanotubes. Nano Lett. 2018, 18, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Cobley, R.J.; Brown, R.A.; Barnett, C.J.; Maffeis, T.G.G.; Penny, M.W. Quantitative analysis of annealed scanning probe tips using energy dispersive X-ray spectroscopy. Appl. Phys. Lett. 2013, 102, 3–7. [Google Scholar] [CrossRef]
- Barnett, C.J.; Kryvchenkova, O.; Wilson, L.S.J.; Maffeis, T.G.G.; Kalna, K.; Cobley, R.J. The role of probe oxide in local surface conductivity measurements. J. Appl. Phys. 2015, 117, 174306. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.A.; Lord, A.M.; Evans, J.E.; Barnett, C.J.; Cobley, R.J.; Wilks, S.P. Forming reproducible non-lithographic nanocontacts to assess the effect of contact compressive strain in nanomaterials. Semicond. Sci. Technol. 2015, 30, 065011. [Google Scholar] [CrossRef]
- Zhang, K.S.; Pham, D.; Lawal, O.; Ghosh, S.; Gangoli, V.S.; Smalley, P.; Kennedy, K.; Brinson, B.; Billups, W.E.; Hauge, R.; et al. Overcoming catalyst residue inhibition of the functionalization of single-walled carbon nanotubes via the Billups-Birch reduction. ACS Appl. Mater. Interfaces 2017, 9, 37972–37980. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Lee, M.; Hilke, M.; Liu, X. Investigating the impact of SEM chamber conditions and imaging parameters on contact resistance of in situ nanoprobing. Nanotechnology 2017, 28, 345702. [Google Scholar] [CrossRef]
- Yang, L.; Anantram, M.P.; Han, J.; Lu, J.P. Bandgap change of carbon nanotubes: Effect of small tensile and torsional strain. Phys. Rev. B 1999, 60, 13874. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Han, J. Electronic structure and properties of deformed carbon nanotubes. Phys. Rev. Lett. 2000, 85, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.; Young, R.J. Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites. Phys. Rev. B 2004, 69, 085405. [Google Scholar] [CrossRef]
- Cronin, S.B.; Swan, A.K.; Ünlü, M.S.; Goldberg, B.B.; Dresselhaus, M.S.; Tinkham, M. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425. [Google Scholar] [CrossRef] [Green Version]
- Dombrowski, R.; Steinebach, C.; Wittneven, C.; Morgenstern, M.; Wiesendanger, R. Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs(110). Phys. Rev. B 1999, 59, 8043. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.M.; Baitinger, E.M.; Shnitov, V.V. π-plasmons in ion-irradiated multiwall carbon nanotubes. Condens. Matter 2004, 348, 95–100. [Google Scholar] [CrossRef]
- Lekawa-Raus, A.; Koziol, K.K.K.; Windle, A.H. Piezoresistive effect in carbon nanotube fibers. ACS Nano 2014, 8, 11214–11224. [Google Scholar] [CrossRef]
- Koziol, K.K.; Janas, D.; Brown, E.; Hao, L. Thermal properties of continuously spun carbon nanotube fibres. Phys. E 2017, 88, 104–108. [Google Scholar] [CrossRef]
- Giorgos, M. Electrochemical oxidation of multi-wall carbon nanotubes. Carbon 2011, 49, 2702–2708. [Google Scholar]
- Ogrin, D.; Chattopadhyay, J.; Sadana, A.K.; Billups, E.; Barron, A.R. Epoxidation and deoxidation of single-walled carbon nanotubes: Quantification of epoxide defects. J. Am. Chem. Soc. 2006, 128, 11322–11323. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Wu, X.; Sun, X.; Lin, J.; Ji, W.; Tan, K.L. Electronic structure and optical limiting behavior of carbon nanotubes. Phys. Rev. Lett. 1999, 82, 2548–2551. [Google Scholar] [CrossRef] [Green Version]
- Ago, H.; Kygler, T.; Cacialli, F.; Petritsch, K.; Friend, R.H.; Salaneck, W.R.; Ono, Y.; Yamabe, T.; Tanka, K. Work function of purified and oxidised carbon nanotubes. Synth. Met. 1999, 103, 2494–2495. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnett, C.J.; McGettrick, J.D.; Gangoli, V.S.; Kazimierska, E.; Orbaek White, A.; Barron, A.R. Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers. Materials 2021, 14, 2106. https://doi.org/10.3390/ma14092106
Barnett CJ, McGettrick JD, Gangoli VS, Kazimierska E, Orbaek White A, Barron AR. Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers. Materials. 2021; 14(9):2106. https://doi.org/10.3390/ma14092106
Chicago/Turabian StyleBarnett, Chris J., James D. McGettrick, Varun Shenoy Gangoli, Ewa Kazimierska, Alvin Orbaek White, and Andrew R. Barron. 2021. "Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers" Materials 14, no. 9: 2106. https://doi.org/10.3390/ma14092106
APA StyleBarnett, C. J., McGettrick, J. D., Gangoli, V. S., Kazimierska, E., Orbaek White, A., & Barron, A. R. (2021). Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers. Materials, 14(9), 2106. https://doi.org/10.3390/ma14092106