Structural, Spectroscopic, Thermal, and Magnetic Properties of a New Dinuclear Copper Coordination Compound with Tiglic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of [Cu2(tig)4(tigH)2]
2.2. Crystal Structure Determination
2.3. Magnetic Measurements
2.4. Other Measurements
3. Results and Discussion
3.1. Structural Analysis
3.2. IR Spectroscopy Analysis
3.3. Thermal Analysis
3.4. SQUID Magnetization Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Attygalle, A.B.; Wu, X.; Ruzicka, J.; Rao, S.; Garcia, S.; Herath, K.; Meinwald, J.; Maddison, D.R.; Will, K.W. Defensive Chemicals Of Two Species Of Trachypachus Motschulski. J. Chem. Ecol. 2004, 30, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Davidson, B.S.; Eisner, T.; Witz, B.; Meinwald, J. Defensive Secretion of the Carabid Beetle. J. Chem. Ecol. 1989, 15, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Larios, A.; Garcia, H.S.; Oliart, R.M.; Valerio-Alfaro, G. Synthesis of flavor and fragrance esters using Candida antarctica lipase. Appl. Microbiol. Biotechnol. 2004, 65, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Buckles, R.E.; Mock, G.V.; Locatelli, L. Tiglic and angelic acid. Chem. Rev. 1955, 55, 659–677. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Ma, S.-G.; Lin, M.-B.; Hou, Q.; Ma, M.; Yu, S.-S. Hydroxylated Ethacrylic and Tiglic Acid Derivatives from the Stems and Branches of Enkianthus chinensis and Their Potential Antiinflammatory Activities. J. Nat. Prod. 2020, 83, 2867–2876. [Google Scholar] [CrossRef]
- Alesiani, D.; Canini, A.; D’Abrosca, B.; DellaGreca, M.; Fiorentino, A.; Mastellone, C.; Monaco, P.; Pacifico, S. Antioxidant and antiproliferative activities of phytochemicals from Quince (Cydonia vulgaris) peels. Food Chem. 2010, 118, 199–207. [Google Scholar] [CrossRef]
- Attygalle, A.B.; Wu, X.; Will, K.W. Biosynthesis of Tiglic, Ethacrylic, and 2-Methylbutyric Acids in a Carabid Beetle, Pterostichus (Hypherpes) californicus. J. Chem. Ecol. 2007, 33, 963–970. [Google Scholar] [CrossRef]
- Stromnova, T.A.; Monakhov, K.Y.; Campora, J.; Palma, P.; Carmona, E.; Alvarez, E. Synthesis and solution behavior of the trinuclear palladium(II) unsaturated carboxylate complexes triangle- Pd3[μ-O2CC(R’) = CHMe]6 (R’ = Me, H): X-ray structure of palladium(II) tiglate (R’ = Me). Inorg. Chim. Acta 2007, 360, 4111–4116. [Google Scholar] [CrossRef]
- Lu, W.; Wu, B.; Zheng, X. Terbium and holmium trans-2,3-dimethylacrylic acid complexes with 1,10-phenanthroline. J. Chem. Crystallogr. 2000, 30, 777–782. [Google Scholar] [CrossRef]
- Edwards, D.A.; Mahon, M.F.; Molloy, K.C.; Ogrodnik, V. Aerosol-assisted chemical vapour deposition of silver films from adducts of functionalised silver carboxylates. J. Mater. Chem. 2003, 13, 563–570. [Google Scholar] [CrossRef]
- Clegg, W.; Cressey, J.T.; Harbron, D.R.; Straughan, B.P. Polymeric and mixed carboxylate compounds: Crystal structures of [Zn(tiglate)2]x and [Zn2(tiglate)3(crotonate)]x. J. Chem. Crystallogr. 1994, 24, 211–217. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. Cambridge Structural Database, CSD v 5.39, August 2018. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- van Niekerk, J.N.; Schoening, F.R.L. A New Type of Copper Complex as found in the Crystal Structure of Cupric Acetate, Cu2(CH3COO)4.2H2O. Acta Crystallogr. 1953, 6, 227–232. [Google Scholar] [CrossRef]
- Figgis, B.N.; Martin, R.L. Magnetic studies with copper(II) salts. Part I. Anomalous paramagnetism and δ-bonding in anhydrous and hydrated copper(II) acetates. J. Chem. Soc. 1956, 3837–3846. [Google Scholar] [CrossRef]
- Martin, R.L.; Waterman, H. Magnetic studies with copper(II) salts. Part II. Anomalous paramagnetism and δ-bonding in anhydrous and hydrated copper(II)n-alkanoates. J. Chem. Soc. 1957, 2545–2551. [Google Scholar] [CrossRef]
- Fomina, I.; Dobrokhotova, Z.; Aleksandrov, G.; Bogomyakov, A.; Fedin, M.; Dolganov, A.; Magdesieva, T.; Novotortsev, V.; Eremenko, I. Influence of the nature of organic components in dinuclear copper(II) pivalates on the composition of thermal decomposition products. Polyhedron 2010, 29, 1734–1746. [Google Scholar] [CrossRef]
- Cheprakova, E.M.; Verbitskiy, E.V.; Kiskin, M.A.; Aleksandrov, G.G.; Slepukhin, P.A.; Sidorov, A.A.; Starichenko, D.V.; Shvachko, Y.N.; Eremenko, I.L.; Rusinov, G.L.; et al. Synthesis and characterization of new complexes derived from 4-thienyl substituted pyrimidines. Polyhedron 2015, 100, 89–99. [Google Scholar] [CrossRef]
- Nikolaevskii, S.A.; Kiskin, M.A.; Starikov, A.G.; Efimov, N.N.; Bogomyakov, A.S.; Minin, V.V.; Ugolkova, E.A.; Nikitin, O.M.; Magdasieva, T.V.; Sidorov, A.A.; et al. Atmospheric Oxygen Influence on the Chemical Transformations of 4,5-Dimethyl-1,2-Phenylenediamine in the Reactions with Copper(II) Pivalate. Russ. J. Coord. Chem. 2019, 45, 279–287. [Google Scholar] [CrossRef]
- Lutsenko, I.A.; Baravikov, D.E.; Kiskin, M.A.; Nelyubina, Y.V.; Primakov, P.V.; Bekker, O.B.; Khoroshilov, A.V.; Sidorov, A.A.; Eremenko, I.L. Bioisostere Modifications of Cu2+ and Zn2+ with Pyromucic Acid Anions and N-Donors: Synthesis, Structures, Thermal Properties, and Biological Activity. Russ. J. Coord. Chem. 2020, 46, 411–419. [Google Scholar] [CrossRef]
- Polunin, R.A.; Burkovskaya, N.P.; Kolotilov, S.V.; Kiskin, M.A.; Bogomyakov, A.S.; Sotnik, S.A.; Eremenko, I.L. Synthesis, structures, sorption and magnetic properties of coordination polymers based on 3d metal pivalates and polydentate pyridine-type ligands. Russ. Chem. Bull. 2014, 63, 252–266. [Google Scholar] [CrossRef]
- Campbell, G.C.; Haw, J.F. Determination of magnetic and structural properties in solids containing antiferromagnetically coupled metal centers using NMR methods. Magneto-structural correlations in anhydrous copper(II) n-butyrate. Inorg. Chem. 1988, 27, 3706–3709. [Google Scholar] [CrossRef]
- Campbell, G.C.; Reibenspies, J.H.; Haw, J.F. Solid-state NMR studies of magneto-structural correlations in anhydrous copper(II) carboxylates. Inorg. Chem. 1991, 30, 171–176. [Google Scholar] [CrossRef]
- Steward, O.W.; Johnston, B.S.; Chang, S.-C.; Harada, A.; Ohba, S.; Tokii, T.; Kato, M. Structural and Magnetic Studies of Dimeric Copper(II) 2,2-diphenylopropanoato and Triphenylacetato Complexes with Oxygen-Donor Ligands. The Cage Geometry of Dimeric α-Phenyl Substituted Copper(II) Carboxylates. Bull. Chem. Soc. Jpn. 1996, 69, 3123–3137. [Google Scholar] [CrossRef]
- Melnik, M. Study of the relation between the structural data and magnetic interactions in oxo-bridged binuclear copper(II) compounds. Coord. Chemi. Rev. 1982, 42, 259–293. [Google Scholar] [CrossRef]
- Kawata, T.; Uekusa, H.; Ohba, S. Magneto-Structural Correlation in Dimeric Copper(II) Benzoates. Acta Crystallogr. Sect. B Struct. Sci. 1992, 48, 253–261. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- CrystalExplorer17; University of Western Australia: Perth, Australia, 2019.
- Tun Nur Iskandar, N.A.J.; Guan-Yeow, Y.; Maeta, N.; Ito, M.M.; Nakamura, Y.; Gas, K.; Sawicki, M. Anisotropic and magnetic properties in non-metal and non-radical organic aggregates of tri-substituted phenyl derivatives. New J. Chem. 2020, 44, 210–217. [Google Scholar] [CrossRef]
- Sawicki, M.; Stefanowicz, W.; Ney, A. Sensitive SQUID magnetometry for studying nanomagnetism. Semicond. Sci. Technol. 2011, 26, 064006. [Google Scholar] [CrossRef] [Green Version]
- Welcher, F.J. Analityczne Zastosowanie Kwasu Wersenowego (eng. The Analytical Uses of Etylenediamineteraacetic Acid); WNT: Warsaw, Poland, 1963; pp. 241–242. [Google Scholar]
- Pasynskii, A.A.; Shapovalov, S.S.; Gordienko, A.V.; Razuvaev, D.I.; Skabitsky, I.V.; Aleksandrov, G.G.; Dobrohotova, Z.W.; Bogomyakov, A.S. Dimeric “paddle-wheel” cymantrenylcarboxylates of copper (II). Inorg. Chim. Acta 2012, 384, 18–22. [Google Scholar] [CrossRef]
- Zachariasen, W.H. Bond lengths in oxygen and halogen compounds of d and f elements. J. Less-Common Met. 1978, 62, 1–7. [Google Scholar] [CrossRef]
- Brown, I.D. Influence of Chemical and Spatial Constraints on the Structures of Inorganic Compounds. Acta Crystallogr. Sect. B Struct. Sci. 1997, 53, 381–393. [Google Scholar] [CrossRef]
- Shields, P.G.; Raithby, P.R.; Allen, F.H.; Motherwell, W.D.S. The assignment and validation of metal oxidation states in the Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. 2000, 56, 455–465. [Google Scholar] [CrossRef] [Green Version]
- Brown, I.D. Chemical and steric constraints in inorganic solids. Acta Crystallogr. Sect. B Struct. Sci. 1992, 48, 553–572. [Google Scholar] [CrossRef]
- Valach, F.; Tokarcik, M.; Maris, T.; Watkin, D.J.; Prout, C.K. Bond-valence approach to the copper-copper and copper-oxygen bonding in binuclear copper(II) complexes: Structure of tetrakis(2-fluorobenzoato-O,O0)-bis(2-fluorobenzoate-O) dicopper(II). Z. Kristallogr. 2000, 215, 56–60. [Google Scholar] [CrossRef]
- Rao, V.M.; Sathyanarayana, D.N.; Manohar, H. X-ray crystal structures of some adducts of dimeric copper(II) acetate. Nature of the copper-copper interaction. J. Chem. Soc. Dalton Trans. 1983, 10, 2167–2173. [Google Scholar] [CrossRef]
- Jelsch, C.; Esjmont, K.; Huder, L. The enrichment ratio of atomic contacts in crystals, an indicator derived from the Hirshfeld surface analysis. IUCrJ 2014, 1, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Bleaney, B.; Bowers, K.D. Anomalous paramagnetism of copper acetate. Proc. R. Soc. Lond. Ser. A 1952, 214, 451–465. [Google Scholar]
- Gardias, A.; Kaszyński, P.; Obijalska, E.; Trzybiński, D.; Domagała, S.; Woźniak, K.; Szczytko, J. Magnetostructural Investigation of Orthogonal 1-Aryl-3-Phenyl-1,4-Dihydrobenzo[e][1,2,4]triazin-4-yl Derivatives. Chem. Eur. J. 2018, 24, 1317. [Google Scholar] [CrossRef]
- Kortum, G.; Vogel, W.; Andrussow, K. Dissociation Constants of Organic Acids in Aqueous Solution; Butterworths: London, UK, 1961. [Google Scholar]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 86th ed.; Taylor and Francis: Boca Raton, FL, USA, 2006. [Google Scholar]
- Dell’Amico, D.B.; Alessio, R.; Calderazzo, F.; Della Pina, F.; Englert, U.; Pampaloni, G.; Passarelli, V. Synproportionation reactions between copper(II) trihalogenoacetates Cu(CX3CO2)2, X = F, Cl or Br, and copper in the presence of carbon monoxide. J. Chem. Soc. Dalton Trans. 2000, 13, 2067–2075. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Y.; Guo, M.; Huang, K.; Xu, W. Ultrasensitive magnetic DNAzyme-copper nanoclusters fluorescent biosensor with triple amplification for the visual detection of E. coli O157:H7. Biosens. Bioelectron. 2020, 167, 112475. [Google Scholar] [CrossRef] [PubMed]
- Kawrani, S.; Boulos, M.; Cornu, D.; Bechelany, M. From Synthesis to Applications: Copper Calcium Titanate (CCTO) and its Magnetic and Photocatalytic Properties. ChemistryOpen 2019, 8, 922–950. [Google Scholar] [CrossRef] [PubMed]
- Magadur, G.; Lauret, J.-S.; Charron, G.; Bouanis, F.; Norman, E.; Huc, V.; Cojocaru, C.-S.; Gómez-Coca, S.; Ruiz, E.; Mallah, T. Charge transfer and tunable ambipolar effect induced by assembly of Cu(II) binuclear complexes on carbon nanotube field effect transistor devices. J. Am. Chem. Soc. 2012, 134, 7896–7901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, A. Magnetic materials and devices: Research and applications. JOM 2011, 63, 24. [Google Scholar] [CrossRef] [Green Version]
Empirical formula | C30H44Cu2O12 |
Formula weight | 723.73 |
Crystal system | Monoclinic |
Space group | P21/c (No. 14) |
Temperature (K) | 100.0(1) |
X-ray wavelength (Å) | λ(CuKα) 1.54184 |
Unit cell dimensions | |
a (Å) | 9.2533(1) |
b (Å) | 17.4061(1) |
c (Å) | 10.2739(1) |
α (°) | 90 |
β (°) | 95.113(1) |
γ (°) | 90 |
Volume (Å3) | 1648.17(3) |
Z | 2 |
Calculated density (Mg/m3) | 1.458 |
Absorption coefficient (mm−1) | 2.101 |
F(000) | 756 |
Crystal size (mm) | 0.078 × 0.093 × 0.098 |
θ Range for data collection (°) | 4.798 to 78.728 |
Index ranges | −11 ≤ h ≤ 11, −21 ≤ k ≤ 21, −13 ≤ l ≤ 12 |
Reflections collected/unique | 33781/3438 |
Rint | 0.0252 |
Completeness (%) | 100.0 (to θ = 67°) |
Min. and max. transmission | 0.50235 and 1.00000 |
Data/restraints/parameters | 3438/0/206 |
Goodness-of-fit on F2 | 1.059 |
Final R indices [I > 2σ(I)] | R1 = 0.0247, wR2 = 0.0663 |
R indices (all data) | R1 = 0.0252, wR2 = 0.0666 |
Largest diff. peak and hole (e•Å−3) | 0.345 and −0.359 |
i—j | dij (Å) | νij (v.u.) | i—j—k | αijk (°) | i—j—k | αijk (°) |
---|---|---|---|---|---|---|
Cu1—O1 | 1.9530(10) | 0.448 | O1—Cu1—O2i | 169.39(4) | O2i—Cu1—O4i | 88.42(4) |
Cu1—O2i | 1.9955(10) | 0.399 | O1—Cu1—O3 | 89.93(5) | O2i—Cu1—O5 | 91.76(4) |
Cu1—O3 | 1.9515(10) | 0.450 | O1—Cu1—O4i | 90.37(4) | O3—Cu1—O4i | 169.61(4) |
Cu1—O4i | 1.9528(10) | 0.448 | O1—Cu1—O5 | 98.85(4) | O3—Cu1—O5 | 94.02(4) |
Cu1—O5 | 2.1991(10) | 0.230 | O2i—Cu1—O3 | 89.38(4) | O4i—Cu1—O5 | 96.19(4) |
Cu1•••Cu1i | 2.5956(4) | – | – | – | – | – |
D—H•••A | d(D—H) (Å) | d(H•••A) (Å) | d(D•••A) (Å) | <(DHA) (°) | Graph-Set | |
O6—H6O•••O2i | 0.82 | 1.82 | 2.6345(14) | 170.3 | S(6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątkowski, M.; Lanka, S.; Czylkowska, A.; Gas, K.; Sawicki, M. Structural, Spectroscopic, Thermal, and Magnetic Properties of a New Dinuclear Copper Coordination Compound with Tiglic Acid. Materials 2021, 14, 2148. https://doi.org/10.3390/ma14092148
Świątkowski M, Lanka S, Czylkowska A, Gas K, Sawicki M. Structural, Spectroscopic, Thermal, and Magnetic Properties of a New Dinuclear Copper Coordination Compound with Tiglic Acid. Materials. 2021; 14(9):2148. https://doi.org/10.3390/ma14092148
Chicago/Turabian StyleŚwiątkowski, Marcin, Suneel Lanka, Agnieszka Czylkowska, Katarzyna Gas, and Maciej Sawicki. 2021. "Structural, Spectroscopic, Thermal, and Magnetic Properties of a New Dinuclear Copper Coordination Compound with Tiglic Acid" Materials 14, no. 9: 2148. https://doi.org/10.3390/ma14092148
APA StyleŚwiątkowski, M., Lanka, S., Czylkowska, A., Gas, K., & Sawicki, M. (2021). Structural, Spectroscopic, Thermal, and Magnetic Properties of a New Dinuclear Copper Coordination Compound with Tiglic Acid. Materials, 14(9), 2148. https://doi.org/10.3390/ma14092148