Study of the Hydrolytic Stability of Fine-Grained Ceramics Based on Y2.5Nd0.5Al5O12 Oxide with a Garnet Structure under Hydrothermal Conditions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orlova, A.I.; Ojovan, M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials 2019, 12, 2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, R.C.; Webert, W.J.; Clinard, F.W. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 1995, 29, 63–127. [Google Scholar] [CrossRef]
- Potanina, E.; Golovkina, L.; Orlova, A.; Nokhrin, A.; Boldin, M.; Sakharov, N. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering. J. Nucl. Mater. 2016, 473, 93–98. [Google Scholar] [CrossRef]
- Tomilin, S.V.; Lizin, A.A.; Lukinykh, A.N.; Livshits, T.S. Radiation resistance and chemical stability of yttrium aluminum garnet. Radiochemistry 2011, 53, 186–190. [Google Scholar] [CrossRef]
- Burakov, B.E.; Anderson, E.B. Experience of V.G. Khlopin Radium Institute on synthesis and investigation of Pu-doped ceramics. In Proceedings of the Plutonium Future—The Science, AIP Conference, Melville, NY, USA, 10–13 May 2000; pp. 159–160. [Google Scholar] [CrossRef]
- Yudintsev, S.V. A structural-chemical approach to selecting crystalline matrices for actinide immobilization. Geol. Ore Deposites 2003, 45, 151–165. [Google Scholar] [CrossRef]
- Livshits, T.S.; Lizin, A.A.; Zhang, J.M.; Ewing, R.C. Amorphization of rare earth aluminate garnets under ion irradiation and decay of 244Cm admixture. Geol. Ore Deposites 2010, 52, 267–278. [Google Scholar] [CrossRef]
- Livshits, T.S. Stability of artificial ferrite garnets with actinides and lanthanoids in water solutions. Geol. Ore Deposites 2008, 50, 470–481. [Google Scholar] [CrossRef]
- Lukinykh, A.N.; Tomilin, S.V.; Lizin, A.A.; Livshits, T.S. Radiation and chemical resistance of synthetic ceramics based on ferritic garnet. Radiochemistry 2008, 50, 432–437. [Google Scholar] [CrossRef]
- Laverov, N.P.; Yudintsev, S.V.; Livshits, T.S.; Stefanovsky, S.V.; Lukinykh, A.N.; Ewing, R.C. Synthetic Minerals with the Pyrochlore and Garnet Structures for Immobilization of Actinide-Containing Wastes. Geochem. Int. 2010, 48, 1–14. [Google Scholar] [CrossRef]
- Caporuscio, F.A.; Scott, B.L.; Xu, H.; Feller, R.K. Garnet nuclear waste forms—Solubility at repository conditions. Nucl. Eng. Des. 2014, 266, 180–185. [Google Scholar] [CrossRef]
- Utsunomiya, S.; Wang, L.; Yudintsev, S.; Ewing, R. Ion Irradiation Effects in Synthetic Garnets Incorporating Actinides. MRS Proc. 2011, 713. [Google Scholar] [CrossRef]
- Konovalov, E.E.; Lastov, A.I.; Nerozin, N.A. On immobilization of high-level waste in an Y-Al garnet-based cermet matrix in SHS conditions. Nucl. EnergyTech. 2015, 12, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Weber, W.; Navrotsky, A.; Stefanovsky, S.; Vance, E.R.; Vernaz, E. Materials Science of High-Level Nuclear Waste Immobilization. MRS Bull. 2009, 34, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Rák, Z.; Ewing, R.; Becker, U. Ferric garnet matrices for immobilization of actinides. J. Nucl. Mater. 2013, 436, 1–7. [Google Scholar] [CrossRef]
- Guo, X.; Rak, Z.; Tavakoli, A.H.; Becker, U.; Ewing, R.C.; Navrotsty, A. Thermodynamics of thorium substitution in yttrium iron garnet: Comparison of experimental and theoretical results. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 16945–16954. [Google Scholar] [CrossRef] [Green Version]
- Rák, Z.; Ewing, R.C.; Becker, U. Electronic structure and thermodynamic stability of uranium-doped yttrium iron garnet. J. Phys. Condens. Matter. 2013, 25, 495502. [Google Scholar] [CrossRef] [PubMed]
- Scheetz, B.E.; Agrawal, D.K.; Breval, E.; Roy, R. Sodium Zirconium-phosphate (NZP) as a Host Structure for Nuclear Waste Immobilization—A Review. Waste Manag. 1994, 14, 489–505. [Google Scholar] [CrossRef]
- Bykov, D.M.; Orlova, A.I.; Tomilin, S.V.; Lizin, A.A.; Lukinykh, A.N. Americium and plutonium in trigonal phosphates (NZP type) Am1/3[Zr2(PO4)3] and Pu1/4[Zr2(PO4)3]. Radiochemistry 2006, 48, 234–239. [Google Scholar] [CrossRef]
- Orlova, A.I.; Koryttseva, A.K.; Kanunov, A.E.; Chuvil’deev, V.N.; Moskvicheva, A.V.; Sakharov, N.; Boldin, M.; Nokhrin, A.V. Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering. Inorg. Mater. 2012, 48, 313–317. [Google Scholar] [CrossRef]
- Gregg, D.J.; Karatchevtseva, I.; Triani, G.; Lumpkin, G.R.; Vance, E.R. The thermophysical properties of calcium and barium zirconium phosphate. J. Nucl. Mat. 2013, 441, 203–210. [Google Scholar] [CrossRef]
- Raison, P.E.; Haire, R.G.; Sato, T.; Ogawa, T. Fundamental and technological aspects of actinide oxide pyrochlores: Relevance for immobilization matrices. In Proceedings of the Sympos. “Sci. Basis for Nucl. Waste Management XXII”, Boston, MA, USA, 30 November–4 December 1998; MRS: Warrendale, PA, USA, 1999; Volume 556, pp. 3–10. [Google Scholar] [CrossRef]
- Ewing, R.C. The design and evaluation of nuclearwaste forms: Clues from mineralogy. Can. Mineral. 2001, 39, 697–715. [Google Scholar] [CrossRef] [Green Version]
- Strachan, D.M.; Scheele, R.D.; Icenhower, J.P.; Buck, E.C.; Kozelisky, A.E.; Sell, R.L.; Elovich, R.J.; Buchmiller, W.C. Radiation Damage Effects in Candidate Ceramics for Plutonium Immobilization: Final Report; Pacific North West National Laboratory: Richland, WA, USA, 2004. [Google Scholar]
- Strachan, D.M.; Scheele, R.D.; Buck, E.C.; Icenhower, J.P.; Kozelisky, A.E.; Sell, R.L.; Elovich, R.J.; Buchmiller, W.C. Radiation damage effects in candidate titanates for Pu disposition: Pyrochlore. J. Nucl. Mater. 2005, 345, 109–135. [Google Scholar] [CrossRef]
- Potanina, E.A.; Orlova, A.I.; Mikhailov, D.A.; Nokhrin, A.V.; Chuvil’deev, V.N.; Boldin, M.S.; Sakharov, N.V.; Lantcev, E.A.; Tokarev, M.G.; Murashov, A.A. Spark Plasma Sintering of fine-grained SrWO4 and NaNd(WO4)2tungstates ceramics with the scheelite structure for nuclear waste immobilization. J. Alloys Compd. 2019, 774, 182–190. [Google Scholar] [CrossRef]
- Saifulin, M.M.; O’Connell, J.H.; Janse van Vuuren, A.; Skuratov, V.A.; Kirilkin, N.S.; Zdorovets, M.V. Latent tracks in bulk yttrium-iron garnet crystals irradiated with low and high velocity krypton and xenon ions. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 2019, 460, 98–103. [Google Scholar] [CrossRef]
- Tokita, M. Spark Plasma Sintering (SPS) Method, Systems, and Applications (Chapter 11.2.3). In Handbook of Advanced Ceramics, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 1149–1177. [Google Scholar] [CrossRef]
- Olevsky, E.; Dudina, D. Field-Assisted Sintering; Springer Int. Publ.: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Mayorov, V.Y.; Kuryavyi, V.; Kaidalova, T.A.; Teplukhina, L.V.; Portnyagin, A.S.; Slobodyuk, A.; Belov, A.; Tananaev, I.G.; et al. SPS technique for ionizing radiation source fabrication based on dense cesium-containing core. J. Hazard. Mater. 2019, 369, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Papynov, E.K.; Shichalin, O.O.; Mayorov, V.Y.; Portnyagin, A.S.; Gridasova, E.; Agafonova, I.G.; Zakirova, A.E.; Tananaev, I.G.; Avramenko, V. Sol-gel and SPS combined synthesis of highly porous wollastonite ceramic materials with immobilized Au-NPs. Ceram. Int. 2017, 43, 8509–8516. [Google Scholar] [CrossRef]
- O’Brien, R.; Ambrosi, R.; Bannister, N.; Howe, S.; Atkinson, H. Spark Plasma Sintering of simulated radioisotope materials within tungsten cermets. J. Nucl. Mater. 2009, 393, 108–113. [Google Scholar] [CrossRef]
- Ryu, H.; Lee, Y.; Cha, S.; Hong, S. Sintering behaviour and microstructures of carbides and nitrides.for the inert matrix fuel by spark plasma sintering. J. Nucl. Mater. 2006, 352, 341–348. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Mironenko, A.Y.; Ryakov, A.; Manakov, I.; Makhrov, P.; Buravlev, I.; Tananaev, I.; Avramenko, V.; Sergienko, N. Synthesis of High-Density Pellets of Uranium Dioxide by Spark Plasma Sintering in Dies of Different Types. Radiochemistry 2018, 60, 362–370. [Google Scholar] [CrossRef]
- Shichalin, O.O.; Papynov, E.K.; Maiorov, V.Y.; Belov, A.; Buravlev, I.; Azarova, Y.; Golub, A.; Gridasova, E.; Sukhorada, A.; Tananaev, I.; et al. Spark Plasma Sintering of Aluminosilicate Ceramic Matrices for Immobilization of Cesium Radionuclides. Radiochemistry 2019, 61, 185–191. [Google Scholar] [CrossRef]
- Chu, X.; Qing, Q.; Li, B.; Yang, Y.; Li, L.; Zhang, H.; Shao, D.; Lu, X. Rapid immobilization of complex simulated radionuclides by as-prepared Gd2Zr2O7 ceramics without structural design. J. Nucl. Mater. 2019, 526, 151782. [Google Scholar] [CrossRef]
- Wang, L.; Shu, X.; Yi, F.; Shao, D.; Zhang, K.; Zhang, H.; Xirui, L. Rapid fabrication and phase transition of Nd and Ce co-doped Gd2Zr2O7 ceramics by SPS. J. Eur. Ceram. Soc. 2018, 38, 2863–2870. [Google Scholar] [CrossRef]
- Karipbayev, Z.T.; Lisitsyn, V.M.; Mussakhanov, D.A.; Alpyssova, G.K.; Popov, A.; Polisadova, E.; Elsts, E.; Akilbekov, A.T.; Kukenova, A.B.; Kemere, M.; et al. Time-resolved luminescence of YAG:Ce and YAGG:Ce ceramics prepared by electron beam assisted synthesis. Nucl. Instrum. Methods Phys. Res. B. Beam Interact. Mater. Atoms 2020, 479, 222–228. [Google Scholar] [CrossRef]
- Golovkina, L.S.; Orlova, A.I.; Nokhrin, A.V.; Boldin, M.S.; Chuvil’deev, V.N.; Sakharov, N.V.; Belkin, O.A.; Shotin, S.V.; Zelenov, A.Y. Spark Plasma Sintering of fine-grain ceramic-metal composites based on garnet-structure oxide Y2.5Nd0.5Al5O12 for inert matrix fuel. Mater. Chem. Phys. 2018, 214, 516–526. [Google Scholar] [CrossRef]
- Golovkina, L.S.; Orlova, A.I.; Chuvil’deev, V.N.; Boldin, M.S.; Lantcev, E.A.; Nokhrin, A.V.; Sakharov, N.V.; Zelenov, A.Y. Spark Plasma Sintering of high-density fine-grained Y2.5Nd0.5Al5O12+SiC composite ceramics. Mater. Res. Bull. 2018, 103, 211–215. [Google Scholar] [CrossRef]
- De Groot, G.J.; Van der Sloot, H.A. Determination of leaching characteristics of waste minerals leading to environmental product certification. In Stabilization and Solidification of Hazardous, Radioactive and Mixed Wastes; Gilliam, T.M., Wiles, C.C., Eds.; ASTM: Philadelphia, PA, USA, 1992; Volume 2, pp. 149–170. [Google Scholar]
- Ikesue, A.; Kamata, K.; Yoshida, K. Effect of neodymium concentration on optical characteristics of polycrytstallineNd:YAG laser materials. J. Amer. Ceram. Soc. 1996, 79, 1921–1926. [Google Scholar] [CrossRef]
- Garanin, S.S.; Dmitryuk, A.V.; Mikhailov, M.D.; Zhilin, A.A.; Rukavishnikov, N.N. Laser ceramics. 2. Spectroscopic and lasing properties. J. Opt. Technol. 2011, 78, 393–399. [Google Scholar] [CrossRef]
- Hollingsworth, J.P.; Kuntz, J.D.; Ryerson, F.J.; Soules, T.F. Nd diffusion in YAG ceramics. Opt. Mater. 2011, 33, 592–595. [Google Scholar] [CrossRef]
- Cherniak, D.J. Rare earth element and gallium diffusion in yttrium aluminum garnet. Phys. Chem. Miner. 1998, 26, 156–163. [Google Scholar] [CrossRef]
- Boulesteix, R.; Maîte, A.; Baumard, J.-F.; Rabinovitch, Y.; Sallé, C.; Weber, S.; Kilo, M. The effect of silica doping on neodymium diffusion in yttrium aluminum garnet ceramics: Implications for sintering mechanisms. J. Eur. Ceram. Soc. 2009, 29, 2517–2526. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, B.; Jiang, Y.; Zhang, G.; Chen, S.; Fan, J.; Zhang, L. Spatial ions distribution on the binding interface in YAG/Nd:LuAG composite laser ceramic. J. Am. Ceram. Soc. 2017, 100, 5030–5037. [Google Scholar] [CrossRef]
- Boulesteix, R.; Maîte, A.; Baumard, J.-F.; Sallé, C.; Rabinovitch, Y. Mechanism of the liquid-phase sintering for Nd:YAG ceramics. Opt. Mater. 2009, 31, 711–715. [Google Scholar] [CrossRef]
- Jiménez-Melendo, M.; Haneda, H.; Nozawa, H. Ytterbium cation diffusion in yttrium aluminum garnet (YAG) — implications for creep mechanisms. J. Am. Ceram. Soc. 2001, 84, 2356–2360. [Google Scholar] [CrossRef]
- Torras, J.; Buj, I.; Rovira, M.; de Pablo, J. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. J. Hazard. Mater. 2011, 186, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Wang, P.; Li, J.-S.; Zhang, T.-T.; Wang, S. Investigation of the leaching behavior of lead in stabilized/solidified waste using a two-year semi-dynamic leaching test. Chemosphere 2017, 166, 1–7. [Google Scholar] [CrossRef]
- Segal, V.M.; Beyerlein, I.J.; Tome, C.N.; Chuvil’deev, V.N.; Kopylov, V.I. Fundamentals and Engineering of Severe Plastic Deformation; Nova Science Publishers: New York, NY, USA, 2010. [Google Scholar]
- Pelleg, J. Diffusion in Ceramics; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
Experimental Conditions | T (°C) | Leaching Rate Ri (at 1000 h), g/(cm2·d) | |
---|---|---|---|
Y | Nd | ||
Static Mode | 25 | 7.11 × 10−10 | 4.14 × 10−10 |
Hydrothermal Conditions | 100 | 1.08 × 10−8 | 1.38 × 10−8 |
200 | 1.75 × 10−7 | 4.99 × 10−7 | |
300 | 2.46 × 10−7 | 4.97 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseeva, L.; Nokhrin, A.; Boldin, M.; Lantsev, E.; Murashov, A.; Orlova, A.; Chuvil’deev, V. Study of the Hydrolytic Stability of Fine-Grained Ceramics Based on Y2.5Nd0.5Al5O12 Oxide with a Garnet Structure under Hydrothermal Conditions. Materials 2021, 14, 2152. https://doi.org/10.3390/ma14092152
Alekseeva L, Nokhrin A, Boldin M, Lantsev E, Murashov A, Orlova A, Chuvil’deev V. Study of the Hydrolytic Stability of Fine-Grained Ceramics Based on Y2.5Nd0.5Al5O12 Oxide with a Garnet Structure under Hydrothermal Conditions. Materials. 2021; 14(9):2152. https://doi.org/10.3390/ma14092152
Chicago/Turabian StyleAlekseeva, Liudmila, Aleksey Nokhrin, Maksim Boldin, Eugeniy Lantsev, Artem Murashov, Albina Orlova, and Vladimir Chuvil’deev. 2021. "Study of the Hydrolytic Stability of Fine-Grained Ceramics Based on Y2.5Nd0.5Al5O12 Oxide with a Garnet Structure under Hydrothermal Conditions" Materials 14, no. 9: 2152. https://doi.org/10.3390/ma14092152
APA StyleAlekseeva, L., Nokhrin, A., Boldin, M., Lantsev, E., Murashov, A., Orlova, A., & Chuvil’deev, V. (2021). Study of the Hydrolytic Stability of Fine-Grained Ceramics Based on Y2.5Nd0.5Al5O12 Oxide with a Garnet Structure under Hydrothermal Conditions. Materials, 14(9), 2152. https://doi.org/10.3390/ma14092152