Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ultrasonic Fatigue Testing Procedure
2.2. Servo-Hydraulic Fatigue Testing Procedure
2.3. Specimen Geometry
2.4. Materials
3. Conventional and Ultrasonic Fatigue Testing
3.1. Aluminium Alloys
3.2. Steels
3.3. Titanium Alloys
3.4. Nickel Alloys
3.5. Magnesium Alloys
3.6. Fibre-Reinforced Polymers Composites
3.7. Graphite
3.8. Other Materials
4. Conclusions
- While the orders of magnitude are faster than conventional fatigue testing, no generally accepted standard for ultrasonic fatigue testing exists. The use of equipment with closed-loop control of vibration amplitude and the resonance frequency is strongly advised since this guarantees high accuracy and reproducibility of ultrasonic tests. Pulsed loading and appropriate cooling are necessary to avoid specimen heating.
- Depending on the material, frequency influences can be caused by strain rate influences on plastic deformation, and by time-dependent influences of the testing environment. The size effect must be considered for all materials, if low and ultrasonic frequency data are compared.
- Several aluminium alloys show comparable lifetimes in ultrasonic and conventional tests. Some alloys tested in ambient air show prolonged lifetimes at high frequency, due to a reduced influence of air humidity. Ultrasonic tests in high humidity or in distilled water can better approximate the environmental conditions acting at low cycling frequencies.
- Frequency effects can be neglected in high-strength steels, where non-metallic inclusions or other defects are preferential crack initiation locations in the regime of long lifetimes. Ultrasonic tests of steels lead to prolonged lifetimes if fatigue cracks initiate in a ferritic phase. Austenitic stainless steels are less prone to frequency effects.
- Titanium alloys may be considered insensitive to frequency effects, as suggested by data from both the original work and the literature. Similar lifetimes and similar crack initiation locations are found with conventional and ultrasonic equipment.
- Ultrasonic tests with nickel alloys showed no frequency effect. On the basis of limited data, the same conclusion can be drawn for cast magnesium alloys and graphite.
- Ultrasonic tests of a glass fibre-reinforced polymer delivered comparable fatigue lifetimes to servo-hydraulic tests, i.e., high-frequency testing is in principle applicable to testing fibre-reinforced polymer composites. However, further research is needed to better understand the influence of the experimental procedure on the measured data.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stanzl-Tschegg, S. Very high cycle fatigue measuring techniques. Int. J. Fatigue 2014, 60, 2–17. [Google Scholar] [CrossRef]
- Willertz, L.E. Ultrasonic Fatigue. Int. Met. Rev. 1980, 2, 65–78. [Google Scholar]
- Roth, L.D. Ultrasonic Fatigue Testing. In ASM Handbook; Newby, J.R., Davis, J.R., Refsnes, S.K., Dietrich, D.A., Eds.; ASTM: Philadelphia, PA, USA, 1992; Volume 8, pp. 240–258. [Google Scholar]
- Mayer, H. Fatigue crack growth and threshold measurements at very high frequencies. Int. Mater. Rev. 1999, 44, 1–36. [Google Scholar] [CrossRef]
- Mayer, H. Recent developments in ultrasonic fatigue. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 3–29. [Google Scholar] [CrossRef]
- Standards, T.J.W.E. Standard Method for Ultrasonic Fatigue Test in Metallic Materials; The Japan Welding Engineering Society Standards: Tokyo, Japan, 2017; Volume WES 1112. [Google Scholar]
- Laird, C.; Charsley, P. Strain Rate Sensitivity Effects in Cyclic Deformation and Fatigue Fracture. In Ultrasonic Fatigue (Proc. 1st Int. Conf. on Fatigue and Corrosion Fatigue Up to Ultrasonic Frequencies); Wells, J.M., Buck, O., Roth, L.D., Tien, J.K., Eds.; Transactions of the Metallurgical Society of AIME: Philadelphia, PA, USA, 1982; pp. 187–205. [Google Scholar]
- Mughrabi, H.; Herz, K.; Stark, X. Cyclic Deformation and Fatigue Behaviour of a-Iron Mono- and Polycrystals. Int. J. Fract. 1981, 17, 193–220. [Google Scholar] [CrossRef]
- Zhu, X.; Jones, J.W.; Allison, J.E. Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: Stress-controlled fatigue life response. Met. Mater. Trans. A 2008, 39, 2681–2688. [Google Scholar] [CrossRef]
- Zhu, X.; Jones, J.W.; Allison, J.E. Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: Small crack propagation. Met. Mater. Trans. A 2008, 39, 2666–2680. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, W.N. A 20 kHz Optical Strain Gauge, 4th ed.; In International Conference on Very High Cycle Fatigue (VHCF-3); Ann, A.M.I., Allison, J.E., Jones, J.W., Larsen, J.M., Ritchie, R.O., Eds.; TMS: Warrendale, PA, USA, 2007; pp. 341–346. [Google Scholar]
- Backe, D.; Balle, F.; Eifler, D. Fatigue testing of CFRP in the Very High Cycle Fatigue (VHCF) regime at ultrasonic frequencies. Compos. Sci. Technol. 2015, 106, 93–99. [Google Scholar] [CrossRef]
- Papakyriacou, M.; Mayer, H.; Plenk, H.; Tschegg, S. Cyclic plastic deformation of tantalum and niobium at very high numbers of cycles. Mater. Sci. Eng. A 2002, 325, 520–524. [Google Scholar] [CrossRef]
- Zettl, B.; Mayer, H.; Ede, C.; Stanzl-Tschegg, S. Very high cycle fatigue of normalized carbon steels. Int. J. Fatigue 2006, 28, 1583–1589. [Google Scholar] [CrossRef]
- Stanzl, S.E.; Tschegg, E.K.; Mayer, H.R. Lifetime Measurements for Random Loading in the Very High Cycle Fatigue Range. Int. J. Fatigue 1986, 8, 195–200. [Google Scholar] [CrossRef]
- Fitzka, M.; Pennings, B.; Karr, U.; Schönbauer, B.; Schuller, R.; Tran, M.-D.; Mayer, H. Influence of cycling frequency and testing volume on the VHCF properties of 18Ni maraging steel. Eng. Fract. Mech. 2019, 216, 106525. [Google Scholar] [CrossRef]
- Stanzl-Tschegg, S.E.; Mayer, H.R. Fatigue and fatigue crack growth of aluminium alloys at very high numbers of cycles. Int. J. Fatigue 2001, 23, 231–237. [Google Scholar] [CrossRef]
- Mayer, H.; Papakyriacou, M.; Zettl, B.; Stanzl-Tschegg, S.E. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. Int. J. Fatigue 2003, 25, 245–256. [Google Scholar] [CrossRef]
- Caton, M.J.; Jones, J.W.; Mayer, H.; Stanzl-Tschegg, S.; Allison, J.E. Demonstration of an Endurance Limit in Cast 319 Aluminum. Met. Mater. Trans. A 2003, 34, 33–41. [Google Scholar] [CrossRef]
- Mayer, H.; Schuller, R.; Fitzka, M. Fatigue of 2024-T351 aluminium alloy at different load ratios up to 1010 cycles. Int. J. Fatigue 2013, 57, 113–119. [Google Scholar] [CrossRef]
- Mayer, H.; Fitzka, M.; Schuller, R. Variable amplitude loading of Al 2024-T351 at different load ratios using ultrasonic equipment. Int. J. Fatigue 2014, 60, 34–42. [Google Scholar] [CrossRef]
- Fitzka, M.; Mayer, H. Constant and variable amplitude fatigue testing of aluminum alloy 2024-T351 with ultrasonic and servo-hydraulic equipment. Int. J. Fatigue 2016, 91, 363–372. [Google Scholar] [CrossRef]
- Mayer, H. Ultrasonic torsion and tension-compression fatigue testing: Measuring principles and investigations on 2024-T351 aluminium alloy. Int. J. Fatigue 2006, 28, 1446–1455. [Google Scholar] [CrossRef]
- Mayer, H.; Papakyriacou, M.; Pippan, R.; Stanzl-Tschegg, S. Influence of Loading Frequency on the High Cycle Fatigue Properties of AlZnMgCu1.5 Aluminium Alloy. Mater. Sci. Eng. A 2001, 314, 51–57. [Google Scholar] [CrossRef]
- Zettl, B.; Mayer, H.; Stanzl-Tschegg, S.E. Fatigue properties of Al1Mg0.6Si foam at low and ultrasonic frequencies. Int. J. Fatigue 2001, 23, 565–573. [Google Scholar] [CrossRef]
- Stanzl-Tschegg, S.E.; Mayer, H.; Schuller, R.; Przeorski, T.; Krug, P. Fatigue properties of spray formed hypereutectic aluminium silicon alloy DISPAL® S232 at high and very high numbers of cycles. Mater. Sci. Eng. A 2012, 538, 327–334. [Google Scholar] [CrossRef]
- Awd, M.; Siddique, S.; Johannsen, J.; Emmelmann, C.; Walther, F. Very high-cycle fatigue properties and microstructural damage mechanisms of selective laser melted AlSi10Mg alloy. Int. J. Fatigue 2019, 124, 55–69. [Google Scholar] [CrossRef]
- Awd, M.; Siddique, S.; Walther, F. Microstructural damage and fracture mechanisms of selective laser melted Al-Si alloys under fatigue loading. Appl. Fract. Mech. 2020, 106, 102483. [Google Scholar] [CrossRef]
- Rhein, R.K.; Shi, Q.; Arjun Tekalur, S.; Wayne Jones, J.; Carroll, J.W. Effect of direct metal laser sintering build parameters on defects and ultrasonic fatigue performance of additively manufactured AlSi10Mg. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 295–305. [Google Scholar] [CrossRef]
- Holper, B.; Mayer, H.; Vasudevan, A.K.; Stanzl-Tschegg, S.E. Near Threshold Fatigue Crack Growth in Aluminium Alloys at Low and Ultrasonic Frequency: Influences of Specimen Thickness, Strain Rate, Slip Behaviour and Air Humidity. Int. J. Fatigue 2003, 25, 397–411. [Google Scholar] [CrossRef]
- Holper, B.; Mayer, H.; Vasudevan, A.K.; Stanzl-Tschegg, S.E. Near Threshold Fatigue Crack Growth at Positive Load Ratio in Aluminium Alloys at Low and Ultrasonic Frequency: Influences of Strain Rate, Slip Behaviour and Air Humidity. Int. J. Fatigue 2004, 26, 27–38. [Google Scholar] [CrossRef]
- Wei, R.P. Rate Controlling Processes and Crack Growth Response. In Hydrogen Effects in Metals; Bernstein, I.M., Thompson, A.W., Eds.; TMS: Warrendale, PA, USA, 1980; pp. 677–689. [Google Scholar]
- Wei, R.P.; Pao, P.S.; Hart, G.; Weir, T.W.; Simmons, G.W. Fracture Mechanics and Surface Chemistry Studies of Fatigue Crack Growth in an Aluminium Alloy. Met. Trans. A 1980, 11, 151–185. [Google Scholar] [CrossRef]
- Engler-Pinto, C.C.; Frisch, R.J.; Lasecki, J.V.; Mayer, H.; Allison, J.R. Effect of Frequency and Environment on High Cycle Fatigue of Cast Aluminum Alloys, 4th International Conference on Very High Cycle Fatigue; Ann, A.M.I., Allison, J.E., Jones, J.W., Larsen, J.M., Ritchie, R.O., Eds.; TMS: Warrendale, PA, USA, 2007; pp. 421–427. [Google Scholar]
- Atrens, A.; Hoffelner, W.; Duerig, T.W.; Allison, J.E. Subsurface crack initiation in high cycle fatigue in Ti6A14V and in a typical martensitic stainless steel. Scr. Met. Mater. 1983, 17, 601–606. [Google Scholar] [CrossRef]
- Naito, T.; Ueda, H.; Kikuchui, M. Fatigue behavior of carburized steel with internal oxides and nonmartensitic micro-structure near the surface. Met. Trans. A 1984, 15, 1431–1436. [Google Scholar] [CrossRef]
- Asami, K.; Sugiyama, Y. Fatigue strength of various surface hardened steels. J. Heat Treat. Technol. Assoc. 1985, 25, 147–150. [Google Scholar]
- Murakami, Y.; Nomotomo, T.; Ueda, T.; Murakami, Y. On the mechanism of fatigue failure in the superlong life regime (>107 cycles). Part I: Influence of hydrogen trapped by inclusions. Fatigue Fract. Engng. Mater. Struct. 2000, 23, 893–902. [Google Scholar] [CrossRef]
- Murakami, Y.; Nomotomo, T.; Ueda, T.; Murakami, Y. On the mechanism of fatigue failure in the superlong life regime (>107 cycles). Part II: A fractographic investigation. Fatigue Fract. Eng. Mater. Struct. 2000, 23, 903–910. [Google Scholar] [CrossRef]
- Sakai, T.; Sato, Y.; Oguma, N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue Fract. Engng. Mater. Struct. 2002, 25, 765–773. [Google Scholar] [CrossRef]
- Schönbauer, B.M.; Fitzka, M.; Karr, U.; Mayer, H. Variable amplitude very high cycle fatigue of 17–4PH steel with a stepwise S-N curve. Int. J. Fatigue 2021, 142, 105963. [Google Scholar] [CrossRef]
- Furuya, Y.; Hirukawa, H.; Takeuchi, E. Gigacycle fatigue in high strength steels. Sci. Technol. Adv. Mat. 2019, 20, 643–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuya, Y. Specimen size effects on gigacycle fatigue properties of high-strength steel under ultrasonic fatigue testing. Scr. Mater. 2008, 58, 1014–1017. [Google Scholar] [CrossRef]
- Furuya, Y. Notable size effects on very high cycle fatigue properties of high-strength steel. Mater. Sci. Eng. A 2011, 528, 5234–5240. [Google Scholar] [CrossRef]
- Li, W.; Sakai, T.; Li, Q.; Luc, L.T.; Wang, P. Effect of loading type on fatigue properties of high strength bearing steel in very high cycle regime. Mater. Sci. Eng. A 2011, 528, 5044–5052. [Google Scholar] [CrossRef]
- Kovacs, S.; Beck, T.; Singheiser, L. Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime. Int. J. Fatigue 2013, 49, 90–99. [Google Scholar] [CrossRef]
- Schmid, S.; Hahn, M.; Issler, S.; Bacher-Hoechst, M.; Furuya, Y.; Mehner, A.; Bomas, H.; Zoch, H.W. Effect of frequency and biofuel E85 on very high cycle fatigue behaviour of the high strength steel X90CrMoV18. Int. J. Fatigue 2014, 60, 90–100. [Google Scholar] [CrossRef]
- Morito, S.; Yoshida, H.; Maki, T.; Huang, X. Effect of block size on the strength of lath martensite in low carbon steels. Mater. Sci. Eng. A 2006, 438–440, 237–240. [Google Scholar] [CrossRef]
- Carstensen, J.; Mayer, H.; Bronsted, P. Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 837–844. [Google Scholar] [CrossRef]
- Grigorescu, A.C.; Hilgendorff, P.M.; Zimmermann, M.; Fritzen, C.P.; Christ, H.J. Cyclic deformation behavior of austenitic Cr–Ni-steels in the VHCF regime: Part I—Experimental study. Int. J. Fatigue 2016, 93, 250–260. [Google Scholar] [CrossRef]
- Manjoine, M.J. Influence of Rate of Strain and Temperature on Yield Stresses of Mild Steel. J. Appl. Mech. 2021, 11, A211–A218. [Google Scholar] [CrossRef]
- Tsutsumi, N.; Murakami, Y.; Doquet, V. Effect of test frequency on fatigue strength of low carbon steel. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 473–483. [Google Scholar] [CrossRef]
- Guennec, B.; Ueno, A.; Sakai, T.; Takanashi, M.; Itabashi, Y. Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior. Int. J. Fatigue 2014, 66, 29–38. [Google Scholar] [CrossRef]
- Nonaka, I.; Setowaki, S.; Ichikawa, Y. Effect of load frequency on high cycle fatigue strength of bullet train axle steel. Int J. Fatigue 2014, 60, 43–47. [Google Scholar] [CrossRef]
- Torabian, N.; Favier, V.; Dirrenberger, J.; Adamski, F.; Ziaei-Rad, S.; Ranc, N. Correlation of the high and very high cycle fatigue response of ferrite based steels with strain rate-temperature conditions. Acta Mater. 2017, 134, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Geilen, M.B.; Klein, M.; Oechsner, M.; Kaffenberger, M.; Störzel, K.; Melz, T. A method for the strain rate dependent correction for control type of fatigue tests. Int. J. Fatigue 2020, 138, 105726. [Google Scholar] [CrossRef]
- Geilen, M.B.; Schönherr, J.A.; Klein, M.; Leininger, D.S.; Giertler, A.; Krupp, U.; Oechsner, M. On the Influence of Control Type and Strain Rate on the Lifetime of 50CrMo4. Metals 2020, 10, 1458. [Google Scholar] [CrossRef]
- Schönbauer, B.M.; Yanase, K.; Endo, M. VHCF properties and fatigue limit prediction of precipitation hardened 17–4PH stainless steel. Int. J. Fatigue 2016, 88, 205–216. [Google Scholar] [CrossRef]
- Schönbauer, B.M.; Yanase, K.; Chehrehrazi, M.; Endo, M.; Mayer, H. Effect of microstructure and cycling frequency on the torsional fatigue properties of 17–4PH stainless steel. Mater. Sci. Eng. A Struct. 2021, 801, 140481. [Google Scholar] [CrossRef]
- Murakami, Y. Material defects as the basis of fatigue design. Int. J. Fatigue 2012, 41, 2–10. [Google Scholar] [CrossRef]
- Morrissey, R.J.; McDowell, D.L.; Nicholas, T. Frequency and stress ratio effects in high cycle fatigue of Ti-6Al-4V. Int. J. Fatigue 1999, 21, 679–685. [Google Scholar] [CrossRef]
- Kikuchi, S.; Heinz, S.; Eifler, D.; Nakamura, Y.; Ueno, A. Evaluation of Very High Cycle Fatigue Properties of Low Temperature Nitrided Ti-6Al-4V Alloy Using Ultrasonic Testing Technology. Key Eng. Mater. 2016, 664, 118–127. [Google Scholar] [CrossRef]
- Morrissey, R.J.; Nicholas, T. Fatigue strength of Ti–6Al–4V at very long lives. Int. J. Fatigue 2005, 27, 1608–1612. [Google Scholar] [CrossRef]
- Janecek, M.; Novy, F.; Harcuba, P.; Strasky, J.; Trsko, L.; Mhaede, M.; Wagner, L. The Very High Cycle Fatigue Behaviour of Ti6Al4V Alloy. Acta Phys. Polonica A 2015, 128, 497–502. [Google Scholar] [CrossRef]
- Petit, J.; Sarrazin-Baudoux, C.; Martinez, J.; Stanzl-Tschegg, S.; Mayer, H. Very High Cycle Fatigue Behavior of a Ti6246 Alloy in air and In High Vacuum, 4th Internation Conference on Very High Cycle Fatigue; Allison, J.E., Jones, J.W., Larsen, J.M., Ritchie, R.O., Eds.; TMS: Warrendale, PA, USA, 2007; pp. 399–408. [Google Scholar]
- Qian, G.; Li, Y.; Paolino, D.S.; Tridello, A.; Berto, F.; Hong, Y. Very-high-cycle fatigue behavior of Ti-6Al-4V manufactured by selective laser melting: Effect of build orientation. Int. J. Fatigue 2020, 136, 105628. [Google Scholar] [CrossRef]
- Günther, J.; Krewerth, D.; Lippmann, T.; Leuders, S.; Tröster, T.; Weidner, A.; Biermann, H.; Niendorf, T. Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int. J. Fatigue 2017, 94, 236–245. [Google Scholar] [CrossRef]
- Pan, X.; Hong, Y. High-cycle and very-high-cycle fatigue behaviour of a titanium alloy with equiaxed microstructure under different mean stresses. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1950–1964. [Google Scholar] [CrossRef]
- Pan, X.; Qian, G.; Wu, S.; Fu, Y.; Hong, Y. Internal crack characteristics in very-high-cycle fatigue of a gradient structured titanium alloy. Sci. Rep. 2020, 10, 4742. [Google Scholar] [CrossRef] [Green Version]
- Heinz, S.; Balle, F.; Wagner, G.; Eifler, D. Analysis of fatigue properties and failure mechanisms of Ti6Al4V in the very high cycle fatigue regime using ultrasonic technology and 3D laser scanning vibrometry. Ultrasonics 2014, 53, 1433–1440. [Google Scholar] [CrossRef]
- Yang, K.; He, C.; Huang, Q.; Huang, Z.Y.; Wang, C.; Wang, Q.; Liu, Y.J.; Zhong, B. Very high cycle fatigue behaviors of a turbine engine blade alloy at various stress ratios. Int. J. Fatigue 2017, 99, 35–43. [Google Scholar] [CrossRef]
- Morrissey, R.J.; Nicholas, T. Staircase testing of a titanium alloy in the gigacycle regime. Int. J. Fatigue 2006, 28, 1577–1582. [Google Scholar] [CrossRef]
- Takeuchi, E.; Furuya, Y.; Nagashima, N.; Matsuoka, S. The effect of frequency on the giga-cycle fatigue properties of a Ti–6Al–4V alloy. Fatigue Fract. Engng. Mater. Struct. 2008, 31, 599–605. [Google Scholar] [CrossRef]
- Furuya, Y.; Takeuchi, E. Gigacycle fatigue properties of Ti–6Al–4V alloy under tensile mean stress. Mater. Sci. Eng. A Struct. 2014, 598, 135–140. [Google Scholar] [CrossRef]
- Wycisk, E.; Siddique, S.; Herzog, D.; Walther, F.; Emmelmann, C. Fatigue Performance of Laser Additive Manufactured Ti–6Al–4V in Very High Cycle Fatigue Regime up to 10⁹ Cycles. Frontiers 2015, 2, 72. [Google Scholar]
- Papakyriacou, M.; Mayer, H.; Pypen, C.H.P., Jr.; Stanzl-Tschegg, S. Influence of Loading Frequency on High-Cycle Fatigue Properties of b.c.c. and h.c.p. Metals. Mater. Sci. Eng. A 2001, 308, 143–152. [Google Scholar] [CrossRef]
- Szczepanski, C.J.; Jha, S.K.; Larsen, J.M.; Jones, J.W. Microstructural Influences on Very-High-Cycle Fatigue-Crack Initiation in Ti-6246. Met. Mater. Trans. A 2008, 39, 2841–2851. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Pollock, T.M.; Wayne Jones, J. Crystallographic fatigue crack initiation in nickel-based superalloy René 88DT at elevated temperature. Acta Mater. 2009, 57, 5964–5974. [Google Scholar] [CrossRef]
- Okazaki, S.; Takakuwa, O.; Ogawa, Y.; Okita, K.; Funakoshi, Y.; Yamabe, J.; Matsuoka, S.; Matsunaga, H. Effect of defects on the fatigue limit of Ni-based superalloy 718 with different grain sizes. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1203–1213. [Google Scholar]
- Stöcker, C.; Zimmermann, M.; Christ, H.-J. Localized cyclic deformation and corresponding dislocation arrangements of polycrystalline Ni-base superalloys and pure Nickel in the VHCF regime. Int. J. Fatigue 2011, 33, 2–9. [Google Scholar] [CrossRef]
- Shyam, A.; Torbet, C.; Jha, S.; Larsen, J.; Caton, M.; Szczepanski, C.; Pollock, T.; Jones, J. Development of Ultrasonic Fatigue for Rapid, High Temperature Fatigue Studies in Turbine Engine Materials. Proc. Int. Symp. Superalloys 2004, 259, 268. [Google Scholar]
- Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature. Met. Mater. Trans. A 2018, 49, 3938–3950. [Google Scholar] [CrossRef]
- Yi, J.Z.; Torbet, C.J.; Feng, Q.; Pollock, T.M.; Jones, J.W. Ultrasonic fatigue of a single crystal Ni-base superalloy at 1000 °C. Mater. Sci. Eng. A Struct. 2007, 443, 142–149. [Google Scholar] [CrossRef]
- Michel, S.A.; Kieselbach, R.; Martens, H.J. Fatigue strength of carbon fibre composites up to the gigacycle regime (gigacycle-composites). Int. J. Fatigue 2006, 28, 261–270. [Google Scholar] [CrossRef]
- Flore, D.; Wegener, K.; Mayer, H.; Karr, U.; Oetting, C.C. Investigation of the high and very high cycle fatigue behaviour of continuous fibre reinforced plastics by conventional and ultrasonic fatigue testing. Compos. Sci. Technol. 2017, 141, 130–136. [Google Scholar] [CrossRef]
- Lee, C.S.; Kim, H.J.; Amanov, A.; Choo, J.H.; Kim, Y.K.; Cho, I.S. Investigation on very high cycle fatigue of PA66-GF30 GFRP based on fiber orientation. Compos. Sci. Technol. 2019, 180, 94–100. [Google Scholar] [CrossRef]
- Backe, D.; Balle, F. Ultrasonic fatigue and microstructural characterization of carbon fiber fabric reinforced polyphenylene sulfide in the very high cycle fatigue regime. Compos. Sci. Technol. 2016, 126, 115–121. [Google Scholar] [CrossRef]
- Cui, W.; Chen, X.; Chen, C.; Cheng, L.; Ding, J.; Zhang, H. Very High Cycle Fatigue (VHCF) Characteristics of Carbon Fiber Reinforced Plastics (CFRP) under Ultrasonic Loading. Materials 2020, 13, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Cheng, L. Ultra-high three-point bending fatigue performance of nano-silica-reinforced CFRP. Int. J. Fatigue 2021, 145, 106085. [Google Scholar] [CrossRef]
- Ding, J.; Cheng, L. Ultra-high three-point bending fatigue fracture characteristics of CFRP modified by MWCNTs and fatigue life data analysis. Compos. Struct. 2021, 259, 113468. [Google Scholar] [CrossRef]
- Mayer, H.; Papakyriacou, M. Fatigue behaviour of graphite and interpenetrating graphite–aluminium composite up to 109 load cycles. Carbon 2006, 44, 1801–1807. [Google Scholar] [CrossRef]
- Stanzl-Tschegg, S.E.; Papakyriacou, M.; Mayer, H.R.; Schijve, J.; Tschegg, E.K. High Cycle Fatigue Crack Growth Properties of Aramid Reinforced Aluminum Laminates. In Composite Materials: Fatigue and Fracture, Vol. IV; Stinchcomb, W.W., Ashbaugh, N.E., Eds.; ASTM: Warminster, PS, USA, 1993; Volume ASTM STP 1156, pp. 637–652. [Google Scholar]
- Papakyriacou, M.; Schijve, J.; Stanzl-Tschegg, S.E. Fatigue Crack Growth Behaviour of Fiber-Metal Laminate Glare 1 and Metal Laminate 7475 with Different Blunt Notches. Fatigue Fract. Eng. Mater. Struct. 1997, 20, 1573–1584. [Google Scholar] [CrossRef]
- Fitzka, M.; Catoor, D.; Irrasch, D.; Reiterer, M.; Mayer, H. Fatigue testing of thin CoNiCr wire up to 1010 cycles. Int. J. Fatigue 2017, 98, 92–100. [Google Scholar] [CrossRef]
- Karr, U.; Schuller, R.; Fitzka, M.; Denk, A.; Strauss, A.; Mayer, H. Very high cycle fatigue testing of concrete using ultrasonic cycling. Mater. Test. 2017, 59, 438–444. [Google Scholar] [CrossRef]
- Stanzl-Tschegg, S.E. Influence of material properties and testing frequency on VHCF and HCF lives of polycrystalline copper. Int. J. Fatigue 2017, 105, 86–96. [Google Scholar] [CrossRef]
- Fitzka, M.; Rennhofer, H.; Catoor, D.; Reiterer, M.; Lichtenegger, H.; Checchia, S.; di Michiel, M.; Irrasch, D.; Gruenewald, T.A.; Mayer, H. High Speed In Situ Synchrotron Observation of Cyclic Deformation and Phase Transformation of Superelastic Nitinol at Ultrasonic Frequency. Exp. Mech. 2020, 60, 317–328. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitzka, M.; Schönbauer, B.M.; Rhein, R.K.; Sanaei, N.; Zekriardehani, S.; Tekalur, S.A.; Carroll, J.W.; Mayer, H. Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data. Materials 2021, 14, 2245. https://doi.org/10.3390/ma14092245
Fitzka M, Schönbauer BM, Rhein RK, Sanaei N, Zekriardehani S, Tekalur SA, Carroll JW, Mayer H. Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data. Materials. 2021; 14(9):2245. https://doi.org/10.3390/ma14092245
Chicago/Turabian StyleFitzka, Michael, Bernd M. Schönbauer, Robert K. Rhein, Niloofar Sanaei, Shahab Zekriardehani, Srinivasan Arjun Tekalur, Jason W. Carroll, and Herwig Mayer. 2021. "Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data" Materials 14, no. 9: 2245. https://doi.org/10.3390/ma14092245
APA StyleFitzka, M., Schönbauer, B. M., Rhein, R. K., Sanaei, N., Zekriardehani, S., Tekalur, S. A., Carroll, J. W., & Mayer, H. (2021). Usability of Ultrasonic Frequency Testing for Rapid Generation of High and Very High Cycle Fatigue Data. Materials, 14(9), 2245. https://doi.org/10.3390/ma14092245