Research on Dynamic and Mechanical Properties of Magnetoactive Elastomers with High Permeability Magnetic Filling Agent at Complex Magneto-Temperature Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Elastomer Material
2.2. Magnetic Field Source
2.3. Study of Dynamic and Mechanical Properties of MAE
3. Results and Discussion
3.1. Assessment of the Material Adsorption Capacity
3.2. Assessment of the Dynamic and Mechanical Properties of the Material
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, J.D.; Lai, X.J.; Fang, W.Z.; Li, H.Q.; Zeng, X.R. An efficient strategy for simultaneously improving tracking resistance and flame retardancy of addition-cure liquid silicone rubber. Polym. Degr. Stab. 2017, 144, 176–186. [Google Scholar] [CrossRef]
- Fuhrer, R.; Schumacher, C.M.; Zeltner, M.; Stark, W.J. Soft Iron/Silicon Composite Tubes for Magnetic Peristaltic Pumping: Frequency-Dependent Pressure and Volume Flow. Adv. Funct. Mater. 2013, 23, 3845–3849. [Google Scholar] [CrossRef]
- Li, Y.P.; Zeng, X.R.; Lai, X.J.; Li, H.Q.; Fang, W.Z. Effect of the platinum catalyst content on the tracking and erosion resistance of addition-cure liquid silicone rubber. Polym. Test. 2017, 63, 92–100. [Google Scholar] [CrossRef]
- Shuib, R.K.; Pickering, K.L.; Mace, B.R. Dynamic properties of magnetorheological elastomers based on iron sand and natural rubber. J. Appl. Polym. Sci. 2015, 132, 41506. [Google Scholar] [CrossRef]
- Nguyen, V.Q.; Ahmed, A.S.; Ramanujan, R.V. Morphing Soft Magnetic Composites. Adv. Mater. 2012, 24, 4041–4054. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, P.; Ciomei, A.; Piotto, M. Design and analysis of integrated flow sensors by means of a two-dimensional finite element model. Sens. Actuat. A 2008, 142, 153–159. [Google Scholar] [CrossRef]
- Cvek, M.; Kutalkova, E.; Moucka, R.; Urbanek, P.; Sedlacik, M. Lightweight, transparent piezoresistive sensors conceptualized as anisotropic magnetorheological elastomers: A durability study. Int. J. Mech. Sci. 2020, 183, 105816. [Google Scholar] [CrossRef]
- Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 2007, 46, 1222–1244. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gong, X.; Xuan, S.; Zhang, W.; Zheng, J.; Jiang, W. Interfacial friction damping properties in magnetorheological elastomers. Smart Mater. Struct. 2011, 20, 035007. [Google Scholar] [CrossRef]
- Grass, R.N.; Athanassiou, E.K.; Stark, W.J. Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis. Angew. Chem. Int. Ed. Engl. 2007, 46, 4909–4912. [Google Scholar] [CrossRef]
- Ruan, X.H.; Xuan, S.H.; Zhao, J.; Bian, H.T.; Gong, X.L. Mechanical performance of a novel magnetorheological fluid damper based on squeeze-valve bi-mode of MRF. Smart Mater. Struct. 2020, 29, 055018. [Google Scholar] [CrossRef]
- Verte, L.A. Electromagnetic Transport of Liquid Metal; Metallurgy: Moscow, Russia, 1965; pp. 26–36. [Google Scholar]
- Hiptmair, F.; Major, Z.; Hasslacher, R.; Hild, S. Design and application of permanent magnet flux sources for mechanical testing of magnetoactive elastomers at variable field directions. Rev. Scient. Instr. 2015, 86, 085107. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, R.; Zhu, S.; Kang, Y.; Huang, B.; Zhu, L. The synthesis, characterization and properties of silicone adhesion promoters for addition-cure silicone rubber. J. Adhes. Sci. Technol. 2018, 32, 1517–1530. [Google Scholar] [CrossRef]
- Lu, X.; Qiao, X.; Watanabe, H.; Gong, X.; Yang, T.; Li, W.; Sun, K.; Li, M.; Yang, K.; Xie, H.; et al. Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Rheol. Acta 2011, 51, 37–50. [Google Scholar] [CrossRef]
- Kramarenko, E.Y.; Chertovich, A.V.; Stepanov, G.V.; Semisalova, A.S.; Makarova, L.A.; Perov, N.S.; Khokhlov, A.R. Magnetic and viscoelastic response of elastomers with hard magnetic filler. Smart Mater. Struct. 2015, 24, 075010. [Google Scholar] [CrossRef]
- Tian, T.; Nakano, M. Fabrication and characterisation of anisotropic magnetorheological elastomer with 45° iron particle alignment at various silicone oil concentrations. J. Intell. Mater. Syst. Struct. 2018, 29, 151–159. [Google Scholar] [CrossRef]
- Berasategi, J.; Salazar, D.; Gomez, A.; Gutierrez, J.; Sebastián, M.S.; Bou-Ali, M.; Barandiaran, J.M. Anisotropic behaviour analysis of silicone/carbonyl iron particles magnetorheological elastomers. Rheol. Acta 2020, 59, 469–476. [Google Scholar] [CrossRef]
- Andriushchenko, P.; Nefedev, K.; Stepanov, G. Calculations of magnetoactive elastomer reactions in a uniform external magnetic field. Eur. Phys. J. B 2014, 87, 11. [Google Scholar] [CrossRef]
- Kang, S.S.; Choi, K.; Nam, J.-D.; Choi, H.J. Magnetorheological Elastomers: Fabrication, Characteristics, and Applications. Materials 2020, 13, 4597. [Google Scholar] [CrossRef] [PubMed]
- Vasilyeva, M.A.; Voeth, S. A multiphysics model of the heterogeneous flow in a varying cross section duct. J. Min. Inst. 2017, 227, 558. [Google Scholar] [CrossRef]
- Boczkowska, A.; Awietjan, S.F.; Pietrzko, S.; Kurzydłowski, K.J. Mechanical properties of magnetorheological elastomers under shear deformation. Compos. Part B Eng. 2012, 43, 636–640. [Google Scholar] [CrossRef]
- Winger, J.; Schümann, M.; Kupka, A.; Odenbach, S. Influence of the particle size on the magnetorheological effect of magnetorheological elastomers. J. Magn. Magn. Mater. 2019, 481, 176–182. [Google Scholar] [CrossRef]
- Kumar, V.; Lee, D.-J. Iron particle and anisotropic effects on mechanical properties of magneto-sensitive elastomers. J. Magn. Magn. Mater. 2017, 441, 105–112. [Google Scholar] [CrossRef]
- Bica, I. The influence of the magnetic field on the elastic properties of anisotropic magnetorheological elastomers. J. Ind. Eng. Chem. 2012, 18, 1666–1669. [Google Scholar] [CrossRef]
- Lokander, M.; Stenberg, B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test. 2003, 22, 677–680. [Google Scholar] [CrossRef]
- Yaremchuk, D.; Toshchevikov, V.; Ilnytskyi, J.; Saphiannikova, M. Magnetic energy and a shape factor of magneto-sensitive elastomer beyond the point dipole approximation. J. Magn. Magn. Mater. 2020, 513, 167069. [Google Scholar] [CrossRef]
- Potapov, A.I.; Kondratev, A.V. Non-destructive testing of multilayer medium by the method of velocity of elastic waves hodograph. J. Min. Inst. 2020, 243, 348–356. [Google Scholar] [CrossRef]
- Ward, P.; Liu, D.; Waldron, K.; Hasan, M. Optimal design of a magnetic adhesion for climbing robots. Nat. Inspired Mob. Robot. 2013, 375–382. [Google Scholar] [CrossRef]
- Çakmak, U.D.; Fischlschweiger, M.; Graz, I.; Major, Z. Adherence Kinetics of a PDMS Gripper with Inherent Surface Tackiness. Polymers 2020, 12, 2440. [Google Scholar] [CrossRef]
- Peregudin, S.; Peregudina, E.; Kholodova, S. The influence of dissipative effects on dynamic processes in a rotating electrically conductive liquid medium. J. Phys. Conf. Ser. 2019, 1359, 012118. [Google Scholar] [CrossRef]
- Andronov, G.P.; Zakharova, I.B.; Filimonova, N.M.; L’vov, V.V.; Aleksandrova, T.N. Magnetic separation of eudialyte ore under pulp pulsation. J. Min. Sci. 2016, 52, 1190–1194. [Google Scholar] [CrossRef]
- Sokolova, M.D.; Shadrinov, N.V.; Dyakonov, A.A.; Zyryanov, I.V. Application of rubber–polymer two-layer material for lining of mining equipment. Gorn. Zhurnal 2019, 2, 66–69. [Google Scholar] [CrossRef]
- Zakharova, M.; Uspenskaya, M.V.; Podshivalov, A.A. The influence of the bentonite particles content on operating properties of gelatin/starch/glycerol/bentonite biocomposite films. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, Albena, Bulgaria, 5–29 June 2017; Volume 17, pp. 961–966. [Google Scholar]
- Dzhabbarov, S.N.; Pryakhin, E.I. Research regarding heat treatment influence on properties of chromic-manganese steel with quenching in polymer solution with purpose of matching drill-stem subs. IOP Conf. Ser. Earth Environ. Sci. 2017, 87, 092009. [Google Scholar] [CrossRef]
- Potapov, A.I.; Makhov, V.E. Methods for Nondestructive Testing and Diagnostics of Durability of Articles Made of Polymer Composite Materials. Russ. J. Nondestruct. Test. 2018, 54, 151–163. [Google Scholar] [CrossRef]
- Vasilyeva, M.A. Justification of the choice matrix material of the magnetoactive elastomer for working camera-channel peristaltic unit. Mater. Sci. Forum 2016, 870, 13–19. [Google Scholar] [CrossRef]
- Brown, H. Crosslinking Reactions of Carboxylic Elastomers. Rubber Chem. Technol. 1963, 36, 931–962. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Residual magnetic induction, Br | 1.21 T. |
Coercive force by magnetization, Hcb | >876 kA/m |
Coercive force by induction, Hcj | >955 kA/m |
Maximum magnetic energy, BH | 263–287 kJ/m3 |
Range of operating temperatures | −60–+80 °C |
Parameter | Value, mm |
---|---|
Overall length, l1 | 75.0 |
Width of the wide part, b1 | 12.5 |
Length of the narrow part, l3 | 25.5 |
Width of the narrow part, b0 | 4.0 |
Distance defining a radius of curvature, l2 | 50.0 |
Distance between marks, l0 | 20.0 |
Simple thickness | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilyeva, M.; Nagornov, D.; Orlov, G. Research on Dynamic and Mechanical Properties of Magnetoactive Elastomers with High Permeability Magnetic Filling Agent at Complex Magneto-Temperature Exposure. Materials 2021, 14, 2376. https://doi.org/10.3390/ma14092376
Vasilyeva M, Nagornov D, Orlov G. Research on Dynamic and Mechanical Properties of Magnetoactive Elastomers with High Permeability Magnetic Filling Agent at Complex Magneto-Temperature Exposure. Materials. 2021; 14(9):2376. https://doi.org/10.3390/ma14092376
Chicago/Turabian StyleVasilyeva, Maria, Dmitriy Nagornov, and Georgiy Orlov. 2021. "Research on Dynamic and Mechanical Properties of Magnetoactive Elastomers with High Permeability Magnetic Filling Agent at Complex Magneto-Temperature Exposure" Materials 14, no. 9: 2376. https://doi.org/10.3390/ma14092376
APA StyleVasilyeva, M., Nagornov, D., & Orlov, G. (2021). Research on Dynamic and Mechanical Properties of Magnetoactive Elastomers with High Permeability Magnetic Filling Agent at Complex Magneto-Temperature Exposure. Materials, 14(9), 2376. https://doi.org/10.3390/ma14092376