Electrical Transport and Magnetic Properties of Metal/Metal Oxide/Metal Junctions Based on Anodized Metal Oxides
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Studies
3.2. SEM Imaging
3.3. Magnetic Properties
3.4. Electrical Transport Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
H‖SGeometry | 10 K | 300 K | ||||||
(kOe) | Area (%) | (kOe) | Width (kOe) | (kOe) | Area (%) | (kOe) | Width (kOe) | |
FAF | ||||||||
TAF | ||||||||
FAT | 100 | 100 | ||||||
H‖SGeometry | 10 K | 300 K | ||||||
(kOe) | Area (%) | (kOe) | Width (kOe) | (kOe) | Area (%) | (kOe) | Width (kOe) | |
FAF | ∼0 | ∼0 | ||||||
TAF | ∼0 | ∼0 | ||||||
FAT | 85 | ∼0 | ∼0 | |||||
References
- Stojanovic, B.D. (Ed.) Magnetic, Ferroelectric, and Multiferroic Metal Oxides; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128111802. [Google Scholar]
- Guo, T.; Yao, M.S.; Lin, Y.H.; Nan, C.W. A comprehensive review on synthesis methods for transition-metal oxide nanostructures. Cryst. Eng. Comm. 2015, 17, 3551–3585. [Google Scholar] [CrossRef]
- Fukumura, T.; Toyosaki, H.; Yamada, Y. Magnetic oxide semiconductors. Semicond. Sci. Technol. 2005, 20, S103–S111. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Zhang, R.; Kumar, P.; Kumar, V.; Kumar, A. Nano-Structured Dilute Magnetic Semiconductors for Efficient Spintronics at Room Temperature. Magnetochemistry 2020, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.A.; Wang, G.; Ling, Y.; Li, Y.; Zhang, J.Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 15–6682. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Chien, C.L. Half-Metallic Ferromagnetic Oxides. MRS Bull. 2003, 28, 720–724. [Google Scholar] [CrossRef]
- Joshi, V.K. Spintronics: A contemporary review of emerging electronics devices. Eng. Sci. Technol. Int. J. 2016, 19, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Dieny, B.; Prejbeanu, I.L.; Garello, K.; Gambardella, P.; Freitas, P.; Lehndorff, R.; Raberg, W.; Ebels, U.; Demokritov, S.O.; Akerman, J.; et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020, 3, 446–459. [Google Scholar] [CrossRef]
- Al-Ahmadi, N.A. Metal oxide semiconductor-based Schottky diodes: A review of recent advances. Mater. Res. Express 2020, 7, 0322001. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhang, H.W.; Su, H.; Zhong, Z.Y. A novel spin-polarized transport effect based on double-Schottky barriers. Phys. E Low-Dimens. Syst. Nanostruct. 2006, 31, 103–106. [Google Scholar] [CrossRef]
- Li, P.; Xia, C.; Zhu, Z.; Wen, Y.; Zhang, Q.; Alshareef, H.N.; Zhang, X.X. Ultrathin Epitaxial Ferromagnetic γ-Fe2O3 Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors. Adv. Funct. Mater. 2016, 26, 5679–5689. [Google Scholar] [CrossRef]
- Versluijs, J.J.; Bari, M.A.; Coey, J.M.D. Magnetoresistance of half-metallic oxide nanocontacts. Phys. Rev. Lett. 2001, 87, 1–4. [Google Scholar] [CrossRef]
- Kim, M.; Seo, J.H.; Singisetti, U.; Ma, Z. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J. Mater. Chem. C 2017, 5, 8338–8354. [Google Scholar] [CrossRef]
- Dai, X.-C.; Hou, S.; Huang, M.-H.; Li, Y.-B.; Li, T.; Xiao, F.-X. Electrochemically anodized one-dimensional semiconductors: A fruitful platform for solar energy conversion. J. Phys. Energy 2019, 1, 022002. [Google Scholar] [CrossRef]
- Kang, X.; Liu, S.; Dai, Z.; He, Y.; Song, X.; Tan, Z. Titanium Dioxide: From Engineering to Applications. Catalysts 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- Könenkamp, R.; Rieck, I. Electrical properties of Schottky diodes on nano-porous TiO2 films. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2000, 69, 519–521. [Google Scholar] [CrossRef]
- Muñoz, A.G. Semiconducting properties of self-organized TiO2 nanotubes. Electrochim. Acta 2007, 52, 4167–4176. [Google Scholar] [CrossRef]
- Nowotny, J.; Alim, M.A.; Bak, T.; Idris, M.A.; Ionescu, M.; Prince, K.; Sahdan, M.Z.; Sopian, K.; Mat Teridi, M.A.; Sigmund, W. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem. Soc. Rev. 2015, 44, 8424–8442. [Google Scholar] [CrossRef]
- Wei, X.; Skomski, R.; Balamurugan, B.; Sun, Z.G.; Ducharme, S.; Sellmyer, D.J. Magnetism of TiO and TiO2 nanoclusters. J. Appl. Phys. 2009, 105, 07C517. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.; Choudhury, A. Room temperature ferromagnetism in defective TiO2 nanoparticles: Role of surface and grain boundary oxygen vacancies. J. Appl. Phys. 2013, 114, 203906. [Google Scholar] [CrossRef]
- Yoon, S.D.; Chen, Y.; Yang, A.; Goodrich, T.L.; Zuo, X.; Arena, D.A.; Ziemer, K.; Vittoria, C.; Harris, V.G. Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2-δ films. J. Phys. Condens. Matter 2006, 18, L355–L361. [Google Scholar] [CrossRef] [Green Version]
- García, J.; Subías, G. The Verwey transition—a new perspective. J. Phys. Condens. Matter 2004, 16, R145–R178. [Google Scholar] [CrossRef]
- Brillet, J.; Grätzel, M.; Sivula, K. Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting. Nano Lett. 2010, 10, 4155–4160. [Google Scholar] [CrossRef]
- Lebrun, R.; Ross, A.; Gomonay, O.; Baltz, V.; Ebels, U.; Barra, A.L.; Qaiumzadeh, A.; Brataas, A.; Sinova, J.; Kläui, M. Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Shokrollahi, H. A review of the magnetic properties, synthesis methods and applications of maghemite. J. Magn. Magn. Mater. 2017, 426, 74–81. [Google Scholar] [CrossRef]
- Sangaiya, P.; Jayaprakash, R. Influence of annealing temperature and electrical conductivity of α-Fe2O3 nanoparticles for Schottky barrier diode. J. Mater. Sci. Mater. Electron. 2020, 31, 15153–15174. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, M.; Yan, H. Electrical transport, magnetic properties of the half-metallic Fe3O4-based Schottky diode. J. Magn. Magn. Mater. 2009, 321, 2340–2344. [Google Scholar] [CrossRef]
- Wen, L.; Xu, R.; Mi, Y.; Lei, Y. Multiple nanostructures based on anodized aluminium oxide templates. Nat. Nanotechnol. 2017, 12, 244–250. [Google Scholar] [CrossRef]
- Kowalski, D.; Kim, D.; Schmuki, P. TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 2013, 8, 235–264. [Google Scholar] [CrossRef]
- Martín-González, M.; Martinez-Moro, R.; Aguirre, M.H.; Flores, E.; Caballero-Calero, O. Unravelling nanoporous anodic iron oxide formation. Electrochim. Acta 2020, 330, 135241. [Google Scholar] [CrossRef]
- Hanaor, D.A.H.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Granados, B.; Sánchez-Tovar, R.; Fernández-Domene, R.M.; García-Antón, J. Study of the annealing conditions and photoelectrochemical characterization of a new iron oxide bi-layered nanostructure for water splitting. Sol. Energy Mater. Sol. Cells 2016, 153, 68–77. [Google Scholar] [CrossRef]
- Shiraz, H.G. Effect of anodization time on photovoltaic properties of nanoporous silicon based solar cells. Sustain. Energy Fuels 2017, 1, 652–657. [Google Scholar] [CrossRef]
- Huang, J.; Tan, X.; Yu, T.; Zhao, L.; Liu, H. Enhanced photovoltaic and photoelectrocatalytic properties by free-standing TiO2 nanotubes via anodization. J. Solid State Electrochem. 2015, 19, 1151–1160. [Google Scholar] [CrossRef]
- Hao, Q.; Wang, C.; Huang, H.; Li, W.; Du, D.; Han, D.; Qiu, T.; Chu, P.K. Aluminum plasmonic photocatalysis. Sci. Rep. 2015, 5, 15288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartkowiak, A.; Zarzycki, A.; Kac, S.; Perzanowski, M.; Marszalek, M. Mechanical Properties of Different Nanopatterned TiO2 Substrates and Their Effect on Hydrothermally Synthesized Bioactive Hydroxyapatite Coatings. Materials 2020, 13, 5290. [Google Scholar] [CrossRef]
- Maximenko, A.; Fedotova, J.; Marszałek, M.; Zarzycki, A.; Zabila, Y. Magnetic characteristics of CoPd and FePd antidot arrays on nanoperforated Al2O3 templates. J. Magn. Magn. Mater. 2016, 400, 200–205. [Google Scholar] [CrossRef]
- Maximenko, A.; Marszałek, M.; Fedotova, J.; Zarzycki, A.; Zabila, Y.; Kupreeva, O.; Lazarouk, S.; Kasiuk, J.; Zavadski, S. Structure and magnetic properties of Co/Pd multilayers prepared on porous nanotubular TiO2 substrate. J. Magn. Magn. Mater. 2017, 434, 157–163. [Google Scholar] [CrossRef]
- Zhou, Z.; Nonnenmann, S.S. Progress in nanoporous templates: Beyond anodic aluminum oxide and towards functional complex materials. Materials 2019, 12, 2535. [Google Scholar] [CrossRef] [Green Version]
- Suchanek, K.; Hajdyla, M.; Maximenko, A.; Zarzycki, A.; Marszalek, M.; Jany, B.R.; Krok, F. The influence of nanoporous anodic titanium oxide substrates on the growth of the crystalline hydroxyapatite coatings. Mater. Chem. Phys. 2017, 186, 167–178. [Google Scholar] [CrossRef]
- Perzanowski, M.; Krupinski, M.; Zarzycki, A.; Zabila, Y.; Marszalek, M. Determination of grain shape of laser-irradiated FePdCu thin alloy films. Appl. Surf. Sci. 2014, 302, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Jiang, Y.; Xu, C. Phase Transition in Iron Thin Films Containing Coherent Twin Boundaries: A Molecular Dynamics Approach. Materials 2020, 13, 3631. [Google Scholar] [CrossRef]
- Chakraborty, J.; Kumar, K.; Ranjan, R.; Chowdhury, S.G.; Singh, S.R. Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 2011, 59, 2615–2623. [Google Scholar] [CrossRef]
- Arshi, N.; Lu, J.; Lee, C.G.; Yoon, J.H.; Koo, B.H.; Ahmed, F. Thickness effect on properties of titanium film deposited by d.c. magnetron sputtering and electron beam evaporation techniques. Bull. Mater. Sci. 2013, 36, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Holec, D.; Dumitraschkewitz, P.; Vollath, D.; Fischer, F.D. Surface Energy of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials 2020, 10, 484. [Google Scholar] [CrossRef] [Green Version]
- Bauer, S.; Pittrof, A.; Tsuchiya, H.; Schmuki, P. Size-effects in TiO2 nanotubes: Diameter dependent anatase/rutile stabilization. Electrochem. Commun. 2011, 13, 538–541. [Google Scholar] [CrossRef]
- Buddington, A.F.; Lindsey, D.H. Iron-Titanium Oxide Minerals and Synthetic Equivalents. J. Petrol. 1964, 5, 310–357. [Google Scholar] [CrossRef]
- Krupinski, M.; Mitin, D.; Zarzycki, A.; Szkudlarek, A.; Giersig, M.; Albrecht, M.; Marszałek, M. Magnetic transition from dot to antidot regime in large area Co/Pd nanopatterned arrays with perpendicular magnetization. Nanotechnology 2017, 28, 085302. [Google Scholar] [CrossRef]
- Johnson, M.T.; Bloemen, P.J.H.; den Broeder, F.J.A.; de Vries, J.J. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 1996, 59, 1409–1458. [Google Scholar] [CrossRef]
- Pandey, R.K.; Padmini, P.; Schad, R.; Dou, J.; Stern, H.; Wilkins, R.; Dwivedi, R.; Geerts, W.J.; O’Brien, C. Novel magnetic-semiconductors in modified iron titanates for radhard electronics. J. Electroceramics 2009, 22, 334–341. [Google Scholar] [CrossRef]
- Pandey, R.K.; Stapleton, W.A.; Sutanto, I. Nature and Characteristics of a Voltage-Biased Varistor and its Embedded Transistor. IEEE J. Electron Devices Soc. 2015, 3, 276–283. [Google Scholar] [CrossRef]
- Einzinger, R. Metal Oxide Varistors. Annu. Rev. Mater. Sci. 1987, 17, 299–321. [Google Scholar] [CrossRef]
- Pandey, R.K.; Stapleton, W.A.; Sutanto, I.; Scantlin, A.A.; Lin, S. Properties and Applications of Varistor–Transistor Hybrid Devices. J. Electron. Mater. 2014, 43, 1307–1316. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, Z.; Tian, H.; Zhao, H.; Freer, R. Investigation of the effect of different dopants on the trap states of ZnO-based and SnO2-based varistors. J. Phys. Conf. Ser. 2009, 152, 012060. [Google Scholar] [CrossRef]
- Szwagierczak, D.; Kulawik, J.; Skwarek, A. Influence of processing on microstructure and electrical characteristics of multilayer varistors. J. Adv. Ceram. 2019, 8, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices, 3rd ed.; Wiley-Interscience Publication: Hoboken, NJ, USA, 2007; ISBN 978-0-470-06832-8. [Google Scholar]
- Tumanski, S. (Ed.) Thin Film Magnetoresistive Sensors; CRC Press: Boca Raton, FL, USA, 2001; ISBN 9780429146046. [Google Scholar]
- Krupinski, M.; Zarzycki, A.; Zabila, Y.; Marszałek, M. Weak Antilocalization Tailor-Made by System Topography in Large Scale Bismuth Antidot Arrays. Materials 2020, 13, 3246. [Google Scholar] [CrossRef]
- Marrows, C.H. Spin-polarised currents and magnetic domain walls. Adv. Phys. 2005, 54, 585–713. [Google Scholar] [CrossRef] [Green Version]
- Stearns, M.B. Unified theory of magnetoresistance in Fe and magnetic layer structures. J. Magn. Magn. Mater. 1992, 104–107, 1745–1746. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, L.; Klavins, P.; Osterloh, F.E.; Hiramatsu, H. Extrinsic magnetoresistance in magnetite nanoparticles. J. Appl. Phys. 2003, 93, 7951–7953. [Google Scholar] [CrossRef]
- Wohlfarth, E.P. Handbook of Magnetic Materials, Volume 3; North Holland: Amsterdam, The Netherlands, 1982; ISBN 9780444536914. [Google Scholar]
- Granberg, P.; Isberg, P.; Baier, T.; Hjörvarsson, B.; Nordblad, P. Anisotropic behaviour of the magnetoresistance in single crystalline iron films. J. Magn. Magn. Mater. 1999, 195, 1–8. [Google Scholar] [CrossRef]
- Yoon, K.S.; Hong, J.P. Temperature-dependent anisotropic magnetoresistance inversion behaviors in Fe3O4 films. J. Magn. Magn. Mater. 2017, 423, 7–11. [Google Scholar] [CrossRef]
- Wegrowe, J.-E.; Comment, A.; Jaccard, Y.; Ansermet, J.-P.; Dempsey, N.M.; Nozières, J.-P. Spin-dependent scattering of a domain wall of controlled size. Phys. Rev. B 2000, 61, 12216–12220. [Google Scholar] [CrossRef] [Green Version]
Sample Labeling | Si/Ti Adhesion Layer/Bottom Au Electrical Contact/ Junction/Top Au Electrical Contact |
---|---|
FAF | Si/Ti/Au/Fe/AFeO/Fe/Au |
FAT | Si/Ti/Au/Fe/AFeO/Ti/Au |
TAF | Si/Ti/Au/Ti/ATiO/Fe/Au |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarzycki, A.; Chojenka, J.; Perzanowski, M.; Marszalek, M. Electrical Transport and Magnetic Properties of Metal/Metal Oxide/Metal Junctions Based on Anodized Metal Oxides. Materials 2021, 14, 2390. https://doi.org/10.3390/ma14092390
Zarzycki A, Chojenka J, Perzanowski M, Marszalek M. Electrical Transport and Magnetic Properties of Metal/Metal Oxide/Metal Junctions Based on Anodized Metal Oxides. Materials. 2021; 14(9):2390. https://doi.org/10.3390/ma14092390
Chicago/Turabian StyleZarzycki, Arkadiusz, Juliusz Chojenka, Marcin Perzanowski, and Marta Marszalek. 2021. "Electrical Transport and Magnetic Properties of Metal/Metal Oxide/Metal Junctions Based on Anodized Metal Oxides" Materials 14, no. 9: 2390. https://doi.org/10.3390/ma14092390
APA StyleZarzycki, A., Chojenka, J., Perzanowski, M., & Marszalek, M. (2021). Electrical Transport and Magnetic Properties of Metal/Metal Oxide/Metal Junctions Based on Anodized Metal Oxides. Materials, 14(9), 2390. https://doi.org/10.3390/ma14092390