The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Catalytic Materials
2.2. Characterization of the Catalytic Material
2.3. Catalytic Activity Measurements in Transesterification of the Vegetable Oil with Methanol
3. Results and Discussion
3.1. Transesterification of Vegetable Oil with Methanol Reaction
3.2. The Characterization of the Physicochemical Properties of the Investigated Catalysts
3.2.1. Basic Properties of the Synthesized Catalyst Systems
3.2.2. Phase Composition Studies of Metal-Oxide Catalysts
3.2.3. Morphology of the Investigated Catalysts
3.2.4. Sorption Properties of Metal-Oxide Catalysts and Natural Zeolite in Relation to Methanol
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doyle, A.M.; Alismaeel, Z.T.; Albayati, T.M.; Abbas, S.A. High purity FAU-type zeolite catalysts from shale rock for biodiesel production. Fuel 2017, 199, 394–402. [Google Scholar] [CrossRef]
- Hartono, R.; Wijanarko, A.; Hermansyah, H. Synthesis of biodiesel using local natural zeolite as heterogeneous anion exchange catalyst. IOP Conference Series: Materials Science and Engineering. In Proceedings of the International Conference on Robotics and Mechantronics (ICRoM 2017), Hong Kong, 12–14 December 2017. [Google Scholar]
- Kusuma, R.I.; Hadinoto, J.P.; Ayucitra, A.; Soetaredjo, F.E.; Ismadji, S. Natural zeolite from Pacitan Indonesia, as catalyst support for transesterification of palm oil. Appl. Clay Sci. 2013, 74, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Gardy, J.; Nourafkan, E.; Osatiashtiani, A.; Lee, A.F.; Wilson, K.; Hassanpour, A.; Lai, X. A core-shell SO4/Mg-Al-Fe3O4 catalyst for biodiesel production. Appl. Catal. B Environ. 2019, 259. [Google Scholar] [CrossRef]
- Kay, K.H.; Yasir, S.M. Biodiesel Production from Low Quality Crude Jatropha Oil Using Heterogeneous Catalyst. Apcbee Procedia 2012, 3, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Mierczynski, P.; Mierczynska, A.; Maniukiewicz, W.; Maniecki, T.P.; Vasilev, K. MWCNTs as a catalyst in oxy-steam reforming of methanol. RSC Adv. 2016, 6, 81408–81413. [Google Scholar] [CrossRef]
- Di Serio, M.; Tesser, R.; Pengmei, L.; Santacesaria, E. Heterogeneous Catalysts for Biodiesel Production. Energy Fuels 2007, 22, 207–217. [Google Scholar] [CrossRef]
- Liu, X.; He, H.; Wang, Y.; Zhu, S. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal. Commun. 2007, 8, 1107–1111. [Google Scholar] [CrossRef]
- Mierczynski, P.; Mosinska, M.; Szkudlarek, L.; Chalupka, K.; Tatsuzawa, M.; Maskari, M.A.; Maniukiewicz, W.; Wahono, S.K.; Vasilev, K.; Szynkowska-Jozwik, M.I. Biodiesel production on monometallic pt, pd, ru, and ag catalysts supported on natural zeolite. Materials 2021, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Al-Saadi, A.; Mathan, B.; He, Y. Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renew Energy 2020, 158, 388–399. [Google Scholar] [CrossRef]
- Sahu, G.; Gupta, N.K.; Kotha, A.; Saha, S.; Datta, S.; Chavan, P.; Kumari, N.; Dutta, P. A Review on Biodiesel Production through Heterogeneous Catalysis Route. Chembioeng. Rev. 2018, 5, 231–252. [Google Scholar] [CrossRef]
- Su, M.; Yang, R.; Li, M. Biodiesel production from hempseed oil using alkaline earth metal oxides supporting copper oxide as bi-functional catalysts for transesterification and selective hydrogenation. Fuel 2013, 103, 398–407. [Google Scholar] [CrossRef]
- Marchetti, J.M.; Miguel, V.U.; Errazu, A.F. Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 2007, 11, 1300–1311. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Hagos, F.Y.; Mamat, R.; Adam, A.A.; Ishak, W.F.W.; Alenezi, R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines—A review. Renew. Sustain. Energy Rev. 2017, 72, 497–509. [Google Scholar] [CrossRef]
- Shokrani, R.; Haghighi, M. Textural evolution of hierarchical nanostructured ZSM-5 via sono-hydrothermal design by various carbon shapes for efficient biodiesel production. Appl. Catal. B Environ. 2020, 271. [Google Scholar] [CrossRef]
- Mierczynski, P.; Ciesielski, R.; Kedziora, A.; Maniukiewicz, W.; Shtyka, O.; Kubicki, J.; Albinska, J.; Maniecki, T.P. Biodiesel Production on MgO, CaO, SrO and BaO Oxides Supported on (SrO)(Al2O3) Mixed Oxide. Catal. Lett. 2015, 145, 1196–1205. [Google Scholar] [CrossRef]
- Vasudevan, P.T.; Briggs, M.J. Biodiesel production—Current state of the art and challenges. Ind. Microbiol. Biotechnol. 2008, 35, 421. [Google Scholar] [CrossRef]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 1–15. [Google Scholar] [CrossRef]
- Otieno, S.O.; Kowenje, C.O.; Okoyo, A.; Onyango, D.M.; Amisi, K.O.; Nzioka, K.M. Optimizing production of biodiesel catalysed by chemically tuned natural zeolites. Mater. Today Proc. 2018, 5, 10561–10569. [Google Scholar] [CrossRef]
- Sahar, S.S.; Iqbal, J.; Ullah, I.; Bhatti, H.N.; Nouren, S.; Ur, R.H.; Nisar, J.; Iqbal, M. Biodiesel production from waste cooking oil: An efficient technique to convert waste into biodiesel. Sustain. Cities Soc. 2018, 41, 220–226. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.a.H.; Osman, A.I.; Kumar, P.S.M.; Jamil, F.; Al-Haj, L.; al Nabhani, A.; Kyaw, H.H.; Myint, M.T.Z.; Mehta, N.; Rooney, D.W. Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study. Energy Convers. Manag. 2021, 236, 114040. [Google Scholar] [CrossRef]
- Jung, S.; Shetti, N.P.; Reddy, K.R.; Nadagouda, M.N.; Park, Y.-K.; Aminabhavi, T.M.; Kwon, E.E. Synthesis of different biofuels from livestock waste materials and their potential as sustainable feedstocks—A review. Energy Convers. Manag. 2021, 236, 114038. [Google Scholar] [CrossRef]
- Leclercq, E.; Finiels, A.; Moreau, C.J. Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts. Am. Oil Chem. Soc. 2001, 78, 1161–1165. [Google Scholar] [CrossRef]
- Taslim, I.; Bani, O.; Parinduri, S.Z.D.M.; Ningsih, P.R.W. Biodiesel Production from Rice Bran Oil by Transesterification Using Heterogeneous Catalyst Natural Zeolite Modified with K2CO3. IOP Conference Series: Materials Science and Engineering. In Proceedings of the TALENTA—Conference on Engineering, Science and Technology 2017 (TALENTA-CEST 2017), Medan, Indonesia, 7–8 September 2017; IOP Publishing: Bristol, UK, 2018; Volume 309, p. 012107. [Google Scholar]
- Ruhul, A.M.; Kalam, M.A.; Masjuki, H.H.; Fattah, I.M.R.; Reham, S.S.; Rashed, M.M. State of the art of biodiesel production processes: A review of the heterogeneous catalyst. RSC Adv. 2015, 5, 101023–101044. [Google Scholar] [CrossRef]
- Sarin, A.; Arora, R.; Singh, N.P.; Sharma, M.; Malhotra, R.K. Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy 2009, 34, 1271–1275. [Google Scholar] [CrossRef]
- Boz, N.; Degirmenbasi, N.; Kalyon, N.D. Transesterification of canola oil to biodiesel using calcium bentonite functionalized with K compounds. Appl. Catal. B Environ. 2013, 138-139, 236–242. [Google Scholar] [CrossRef]
- Kurniasih, E.; Pardi, P. Estimating the Opportunities of Ester Content Improvement through Variation of NaOH, KI and KIO3 Developed Impregnators on Activated Natural Zeolite Catalyst for Methyl Ester Synthesis. IOP Conference Series: Materials Science and Engineering. In Proceedings of the 3rd Nommensen International Conference on Technology and Engineering 2019 (3rd NICTE), Medan, Indonesia, 25–26 July 2019; IOP Publishing: Bristol, UK, 2020; Volume 725, p. 012045. [Google Scholar]
- Stanciakova, K.; Weckhuysen, B.M. Water–active site interactions in zeolites and their relevance in catalysis. Trends Chem. 2021. [Google Scholar] [CrossRef]
- David, E. Evaluation of Na-13X zeolites activity in the catalytic pyrolysis of rapeseed oil cake to produce bio-oil. Appl. Catal. A Gen. 2021, 617, 118126. [Google Scholar] [CrossRef]
- Alismaeel, Z.T.; Abbas, A.S.; Albayati, T.M.; Doyle, A.M. Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts. Fuel 2018, 234, 170–176. [Google Scholar] [CrossRef]
- Noiroj, K.; Intarapong, P.; Luengnaruemitchai, A.; Jai-In, S. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renew. Energy 2009, 34, 1145–1150. [Google Scholar] [CrossRef]
- Putra, I.M.W.A. Production of biodiesel from waste cooking oil by transesterification reaction using CaO/natural zeolite catalysts. Indones. E-J. Appl. Chem. 2017, 5, 2017. [Google Scholar]
- Amalia, S.; Khalifah, S.N.; Baroroh, H.; Muiz, A.; Rahmatullah, A.; Aini, N.; Hs, M.R.A.; Umam, M.N.; Isnaini, I.A.; Suryana, R. Biodiesel production from castor oil using heterogeneous catalyst KOH/zeolite of natural zeolite Bandung Indonesia. AIP Conf. Proc. 2019, 2120, 080016. [Google Scholar]
- Wahono, S.K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasilev, K. Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity. Microporous and Mesoporous Materials. Adv. Eng. Mater. 2020, 294, 109871. [Google Scholar]
- Wahono, S.K.; Suwanto, A.; Prasetyo, D.J.; Hernawan; Jatmiko, T.H.; Vasilev, K. Plasma activation on natural mordenite-clinoptilolite zeolite for water vapor adsorption enhancement. Appl. Surf. Sci. 2019, 483, 940–946. [Google Scholar] [CrossRef]
- Calero, J.; Luna, D.; Sancho, E.D.; Luna, C.; Bautista, F.M.; Romero, A.A.; Posadillo, A.; Verdugo, C. Development of a new biodiesel that integrates glycerol, by using CaO as heterogeneous catalyst, in the partial methanolysis of sunflower oil. Fuel 2014, 122, 94–102. [Google Scholar] [CrossRef]
- Helwani, Z.; Othman, M.R.; Aziz, N.; Kim, J.; Fernando, W.J.N. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: A review. Appl. Catal. A Gen. 2009, 363, 1–10. [Google Scholar] [CrossRef]
- Tonetto, G.; Marchetti, J. Transesterification of Soybean Oil Over Me/Al2O3 (Me = Na, Ba, Ca, and K) Catalysts and Monolith K/Al2O3-Cordierite. Top. Catal. 2010, 53, 755–762. [Google Scholar] [CrossRef]
- Mierczynski, P. Comparative Studies of Bimetallic Ru–Cu, Rh–Cu, Ag–Cu, Ir–Cu Catalysts Supported on ZnO–Al2O3, ZrO2–Al2O3 Systems. Catal. Lett. 2016, 146, 1825–1837. [Google Scholar] [CrossRef]
- Michalska, A.; Daturi, M.; Saussey, J.; Nowak, I.; Ziolek, M. The role of MCM-41 composition in the creation of basicity by alkali metal impregnation. Microporous and Mesoporous Materials. Adv. Eng. Mater. 2006, 90, 362–369. [Google Scholar]
- Schenkel, R.; Jentys, A.; Parker, S.F.; Lercher, J.A. Investigation of the Adsorption of Methanol on Alkali Metal Cation Exchanged Zeolite X by Inelastic Neutron Scattering. J. Phys. Chem. B 2004, 108, 7902–7910. [Google Scholar] [CrossRef]
- Jones, M.O.; Taylor, A.D.; Parker, S.F. Neutron scattering studies of catalyst systems at the ISIS neutron spallation source. Appl. Petrochem. Res. 2012, 2, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Mierczynski, P.; Chalupka, K.A.; Maniukiewicz, W.; Kubicki, J.; Szynkowska, M.I.; Maniecki, T.P. SrAl2O4 spinel phase as active phase of transesterification of rapeseed oil. Appl. Catal. B Environ. 2015, 164, 176–183. [Google Scholar] [CrossRef]
Mobile Phase Gradient | Flow Rate mL·min−1 | ||
---|---|---|---|
Time (min) | Solvent A (%) | Solvent B (%) | |
0.0 | 100 | 0 | 1 |
20.0 | 100 | 0 | 1 |
45.0 | 0 | 100 | 1 |
70.0 | 0 | 100 | 1 |
75 | 100 | 0 | 1 |
Catalyst | Reaction Temperature (°C) | Reaction Time (h) | Molar Ratio Oil: Methanol | Catalyst Weight (g) | Triglycerides Conversion (%) | FAME Yield (%) |
---|---|---|---|---|---|---|
NZ | 200 | 2 | 1:9 | 0.5 | 37.8 | 13.1 |
NZ | 220 | 2 | 1:9 | 0.5 | 63.3 | 44.2 |
NZ | 240 | 2 | 1:9 | 0.5 | 76.5 | 65.8 |
NZ | 260 | 2 | 1:9 | 0.5 | 90.5 | 67.2 |
NZ | 280 | 2 | 1:9 | 0.5 | 93.2 | 84.7 |
NZ | 300 | 2 | 1:9 | 0.5 | 94.5 | 87.3 |
NZ (calc. 400 °C/4 h) | 200 | 2 | 1:9 | 0.5 | 29.6 | 22.3 |
NZ (calc. 400 °C/4 h) | 220 | 2 | 1:9 | 0.5 | 54.0 | 46.6 |
NZ (red. 300 °C/1 h) | 200 | 2 | 1:9 | 0.5 | 36.0 | 17.5 |
NZ (red. 300 °C/1 h) | 220 | 2 | 1:9 | 0.5 | 59.9 | 42.9 |
NZ (red. 400 °C/1 h) | 200 | 2 | 1:9 | 0.5 | 36.2 | 28.0 |
NZ (red. 400 °C/1 h) | 220 | 2 | 1:9 | 0.5 | 60.3 | 44.0 |
NZ (red. 500 °C/1 h) | 200 | 2 | 1:9 | 0.5 | 54.6 | 35.6 |
NZ (red. 500 °C/1 h) | 220 | 2 | 1:9 | 0.5 | 63.0 | 51.6 |
10% CaO/NZ (calc. 400 °C/4 h) | 220 | 2 | 1:9 | 0.5 | 92.4 | 98.5 |
10% MgO/NZ (calc. 400 °C/4 h) | 220 | 2 | 1:9 | 0.5 | 92.1 | 94.0 |
10% MgO/ZSM–5 (Si/Al = 23) | 220 | 2 | 1:9 | 0.5 | 91.9 | 86.2 |
10% MgO/ZSM–5 (Si/Al = 50) | 220 | 2 | 1:9 | 0.5 | 94.3 | 88.9 |
10% SrO/NZ (calc. 400 °C/4 h) | 220 | 2 | 1:9 | 0.5 | 92.4 | 93.2 |
Catalyst | Total Basicity (mmol/g) | Weak Centers (100–300 °C) (mmol/g) | Medium Centers (300–450 °C) (mmol/g) | Strong Centers (450–600 °C) (mmol/g) |
---|---|---|---|---|
NZ | 0.84 | 0.42 | 0.03 | 0.39 |
10% CaO/NZ | 2.41 | 0.11 | 0.12 | 2.17 |
10% MgO/NZ | 1.48 | 0.08 | 0.09 | 1.32 |
10% SrO/NZ | 1.29 | 0.29 | 0.18 | 0.82 |
No. | Catalysts | The Size of MO Crystallites [nm] |
---|---|---|
1. | 10% CaO/NZ | CaO = 35(2) |
2. | 10% MgO/NZ | MgO = 83(1) |
3. | 10% SrO/NZ | SrO = 91(2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mierczynski, P.; Szkudlarek, L.; Chalupka, K.; Maniukiewicz, W.; Wahono, S.K.; Vasilev, K.; Szynkowska-Jozwik, M.I. The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction. Materials 2021, 14, 2415. https://doi.org/10.3390/ma14092415
Mierczynski P, Szkudlarek L, Chalupka K, Maniukiewicz W, Wahono SK, Vasilev K, Szynkowska-Jozwik MI. The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction. Materials. 2021; 14(9):2415. https://doi.org/10.3390/ma14092415
Chicago/Turabian StyleMierczynski, Pawel, Lukasz Szkudlarek, Karolina Chalupka, Waldemar Maniukiewicz, Satriyo K. Wahono, Krasimir Vasilev, and Malgorzata I. Szynkowska-Jozwik. 2021. "The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction" Materials 14, no. 9: 2415. https://doi.org/10.3390/ma14092415
APA StyleMierczynski, P., Szkudlarek, L., Chalupka, K., Maniukiewicz, W., Wahono, S. K., Vasilev, K., & Szynkowska-Jozwik, M. I. (2021). The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction. Materials, 14(9), 2415. https://doi.org/10.3390/ma14092415