A Comparative Analysis of Selected Methods for Determining Young’s Modulus in Polylactic Acid Samples Manufactured with the FDM Method
Abstract
:1. Introduction
- E—Young’s modulus [Pa]; m—mass of the bar [g]; b—width of the bar [mm];
- L—length of the bar [mm]; t—thickness of the bar [mm]; ff—fundamental flexural resonant frequency of bar [Hz]; T—correction factor for the fundamental flexural mode that accounts for the finite thickness of bar, Poisson’s ratio; ν—Poisson’s ratio.
- E— Young’s modulus [Pa]; VL—ultrasonic wave speed [m/s]; ρ—density [kg/m3]
- ν— Poisson’s ratio.
2. Materials and Methods
2.1. Sample Preparation
2.2. Ultrasonic Tests
2.3. IET Tests
2.4. Tensile Tests
2.5. Density Determination
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pszczółkowski, B.; Bramowicz, M.; Rejmer, W.; Chrostek, T.; Senderowski, C. The influence of the processing temperature of polylactide on geometric structure of the surface using FDM technique. Arch. Metall. Mater. 2021, 66, 181–186. [Google Scholar]
- Wang, L.; Gardner, D.J. Contribution of printing parameters to the interfacial strength of polylactic acid (PLA) in material extrusion additive manufacturing. Prog. Addit. Manuf. 2018, 3, 165–171. [Google Scholar] [CrossRef]
- Qin, L.; Qiu, J.; Liu, M.; Ding, S.; Shao, L.; Lü, S.; Zhang, G.; Zhao, Y.; Fu, X. Mechanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate). Chem. Eng. J. 2011, 166, 772–778. [Google Scholar] [CrossRef]
- Cao, H.; Qi, F.; Liu, R.; Wang, F.; Zhang, C.; Zhang, X.; Chai, Y.; Zhai, L. The influence of hydrogen bonding on N–methyldiethanolamine—Extended polyurethane solid—Solid phase change materials for energy storage. RSC Adv. 2017, 7, 11244–11252. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Qi, S.; Zhang, D.; Su, Y.; Wang, D. The role of poly (ethylene glycol) on crystallization, interlayer bond and mechanical performance of polylactide parts fabricated by fused filament fabrication. Addit. Manuf. 2020, 35, 101414. [Google Scholar] [CrossRef]
- Palai, B.; Biswal, M.; Mohanty, S.; Nayak, S.K. In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind. Crops Prod. 2019, 141, 111748. [Google Scholar] [CrossRef]
- Doi, Y.; Steinbuchel, A.; Chen, G.Q. Polyesters III: Applications and commercial products. In Biopolymers; Chemical Industry Press: Beijing, China, 2004; Volume 4, pp. 235–249. [Google Scholar]
- Mobley, D.P. Plastics from Microbes; Hanser Publishers: New York, NY, USA, 1994. [Google Scholar]
- Södergård, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 2002, 27, 1123–1163. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Mieloszyk, M.; Andrearczyk, A.; Majewska, K.; Jurek, M.; Ostachowicz, W. Polymeric structure with embedded fiber Bragg grating sensor manufactured using multi-jet printing method. Measurement 2020, 166, 108229. [Google Scholar] [CrossRef]
- Donik, Ž.; Nečemer, B.; Vesenjak, M.; Glodež, S.; Kramberger, J. Computational analysis of mechanical performance for composite polymer biodegradable stents. Materials 2021, 14, 6016. [Google Scholar] [CrossRef]
- Khanlou, H.M.; Woodfield, P.; Summerscales, J.; Francucci, G.; King, B.; Talebian, S.; Foroughi, J.; Hall, W. Estimation of mechanical property degradation of poly (lactic acid) and flax fibre reinforced poly (lactic acid) bio-composites during thermal processing. Measurement 2018, 116, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Belarbi, Y.E.; Guessasma, S.; Belhabib, S.; Benmahiddine, F.; Hamami, A.E.A. Effect of printing parameters on mechanical behaviour of PLA-flax printed structures by fused deposition modelling. Materials 2021, 14, 5883. [Google Scholar] [CrossRef]
- Xue, H.; Liu, D.; Ge, R.; Pan, L.; Peng, W. The delay loop phenomenon in high temperature elasticity modulus test by in–situ ultrasonic measurements. Measurement 2020, 160, 107833. [Google Scholar] [CrossRef]
- Elastic Modulus Measurement. Available online: https://www.olympus-ims.com/en/applications/elastic-modulus-measurement/ (accessed on 15 December 2021).
- Moore, P.O. Nondestructive Testing Handbook, Ultrasonic Testing, 3rd ed.; American Society for Nondestructive Testing: Columbus, OH, USA, 2007; pp. 319–332. [Google Scholar]
- Krautkrämer, J.; Krautkrämer, H. Ultrasonic Testing of Materials 4 Rev.; Springer: Berlin, Germany, 1990. [Google Scholar]
- ASTM E1876-15; Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration. ASTM International: Philadelphia, PA, USA, 2009.
- ISO 12680-1:2005; Methods of Test for Refractory Products—Part 1: Determination of Dynamic Young’s Modulus (MOE) by Impulse Excitation of Vibration, ISO 12680-1:2005. International Organization for Standardization: Geneva, Switzerland, 2005.
- IMCE—Integrated Material Control Engineering n.v. RFDA HT 1050 Software Manual; IMCE: Genk, Belgium, 2007. [Google Scholar]
- Gerle, A.; Podwórny, J. Comparing of Young’s modulus of shamotte refractories determined by static and dynamic methods. Work. Inst. Ceram. Build. Mater. 2013, 6, 28–37. [Google Scholar]
- Coppola, B.; Cappetti, N.; Di Maio, L.; Scarfato, P.; Incarnato, L. 3D printing of PLA/clay nanocomposites: Influence of printing temperature on printed samples properties. Materials 2018, 11, 1947. [Google Scholar] [CrossRef] [Green Version]
- Kakanuru, P.; Pochiraju, K. Moisture ingress and degradation of additively manufactured PLA, ABS and PLA/SiC composite parts. Addit. Manuf. 2020, 36, 101529. [Google Scholar] [CrossRef]
- Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K.M. Preparation and characterization of thermally stable ABS/HDPE blend for fused filament fabrication. Mater. Manuf. Processes 2020, 35, 230–240. [Google Scholar] [CrossRef]
- Billah, K.M.M.; Lorenzana, F.A.; Martinez, N.L.; Wicker, R.B.; Espalin, D. Thermomechanical characterization of short carbon fiber and short glass fiber-reinforced ABS used in large format additive manufacturing. Addit. Manuf. 2020, 35, 101299. [Google Scholar] [CrossRef]
- ISO 527-3:2018; Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets, ISO 527-3:2018. International Organization for Standardization: Geneva, Switzerland, 2018.
- ISO 527-2:2012; Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics, ISO 527-2:2012. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 527-1:2012; Plastics—Determination of tensile properties—Part 1: General principles, ISO 527-1:2012. International Organization for Standardization: Geneva, Switzerland, 2012.
- Density of Plastics: Technical Properties. Available online: https://omnexus.specialchem.com/polymer-properties/properties/density (accessed on 15 December 2021).
- de Ciurana, J.; Serenóa, L.; Vallès, È. Selecting process parameters in RepRap additive manufacturing system for PLA scaffolds manufacture. Procedia CIRP 2013, 5, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Wittbrodt, B.; Pearce, J.M. The effects of PLA color on material properties of 3D printed components. Addit. Manuf. 2015, 8, 110–116. [Google Scholar]
- Lee, C.Y.; Liu, C.Y. The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication. Addit. Manuf. 2019, 25, 196–203. [Google Scholar] [CrossRef]
- Bradt, R.C. Elastic properties of refractories: Their roles in characterization. Refract. Appl. 2007, 12, 11–26. [Google Scholar]
- Malecki, I.; Polesiński, Z.; Rećko, W.M. Dynamic and static elasticity modules of ceramics. Glas. Ceram. 2001, 52, 2–8. [Google Scholar]
- Rećko, W.M. Evaluation of ceramic materials I. Young’s modulus. Glas. Ceram. 2006, 57, 4–6. [Google Scholar]
- Mukherjee, S.; Basu, C.; Ghosh, U.S. Ultrasonic properties of V2O5-P2O5 amorphous materials at different temperatures. J. Non. Cryst. Solids 1992, 144, 159–168. [Google Scholar] [CrossRef]
- Adachi, K.; Harrison, G.; Lamb, J.; North, A.M.; Pethrick, R.A. High frequency ultrasonic studies of polyethylene. Polymer 1981, 22, 1032–1039. [Google Scholar] [CrossRef]
- Lacaze, B. Random propagation times for ultrasonics through polyethyilene. Ultrasonics 2021, 111, 106313. [Google Scholar] [CrossRef] [PubMed]
- Wootthikanokkhan, J.; Cheachun, T.; Sombatsompop, N.; Thumsorn, S.; Kaabbuathong, N.; Wongta, N.; Wong-Om, J.; Ayutthaya, I.N.; Kositchaiyong, A. Crystallization and thermomechanical properties of PLA composites: Effects of additive types and heat treatment. J. Appl. Polym. Sci. 2013, 129, 215–223. [Google Scholar] [CrossRef]
- Zhao, P.; Peng, Y.; Yang, W.; Fu, J.; Turng, L.S. Crystallization measurements via ultrasonic velocity: Study of poly (lactic acid) parts. J. Appl. Polym. Sci. 2015, 53, 700–708. [Google Scholar] [CrossRef]
- Lionetto, F.; Maffezzoli, A. Polymer characterization by ultrasonic wave propagation. Adv. Polym. Technol. 2008, 27, 63–73. [Google Scholar] [CrossRef]
Nozzle Temperature [°C] | Density [g·cm−3] | Young’s Modulus in STT Method [GPa] | Young’s Modulus in US Method [GPa] | Young’s Modulus in IET Method [GPa] |
---|---|---|---|---|
180 | 1.269 ± 0.004 | 2.07 ± 0.03 | 2.76 ± 0.21 | 3.54 ± 0.04 |
190 | 1.258 ± 0.012 | 2.15 ± 0.05 | 2.94 ± 0.29 | 3.41 ± 0.04 |
200 | 1.254 ± 0.012 | 2.12 ± 0.07 | 2.77 ± 0.27 | 3.15 ± 0.02 |
210 | 1.254 ± 0.001 | 2.15 ± 0.03 | 3.08 ± 0.18 | 3.53 ± 0.02 |
220 | 1.251 ± 0.001 | 2.06 ± 0.03 | 2.30 ± 0.13 | 3.12 ± 0.02 |
230 | 1.246 ± 0.003 | 2.14 ± 0.02 | 2.53 ± 0.14 | 3.64 ± 0.03 |
ABS | 1.026 ± 0.018 | 2.12 ± 0.03 | 2.75 ± 0.06 | 2.03 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pszczółkowski, B.; Nowak, K.W.; Rejmer, W.; Bramowicz, M.; Dzadz, Ł.; Gałęcki, R. A Comparative Analysis of Selected Methods for Determining Young’s Modulus in Polylactic Acid Samples Manufactured with the FDM Method. Materials 2022, 15, 149. https://doi.org/10.3390/ma15010149
Pszczółkowski B, Nowak KW, Rejmer W, Bramowicz M, Dzadz Ł, Gałęcki R. A Comparative Analysis of Selected Methods for Determining Young’s Modulus in Polylactic Acid Samples Manufactured with the FDM Method. Materials. 2022; 15(1):149. https://doi.org/10.3390/ma15010149
Chicago/Turabian StylePszczółkowski, Bartosz, Konrad W. Nowak, Wojciech Rejmer, Mirosław Bramowicz, Łukasz Dzadz, and Remigiusz Gałęcki. 2022. "A Comparative Analysis of Selected Methods for Determining Young’s Modulus in Polylactic Acid Samples Manufactured with the FDM Method" Materials 15, no. 1: 149. https://doi.org/10.3390/ma15010149
APA StylePszczółkowski, B., Nowak, K. W., Rejmer, W., Bramowicz, M., Dzadz, Ł., & Gałęcki, R. (2022). A Comparative Analysis of Selected Methods for Determining Young’s Modulus in Polylactic Acid Samples Manufactured with the FDM Method. Materials, 15(1), 149. https://doi.org/10.3390/ma15010149