Fast and Clean Synthesis of Nylon-6/Synthetic Saponite Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation Procedures
2.2. Characterisation Techniques
3. Results
3.1. Synthetic Saponite
3.2. Samples N6S5-X
3.3. Samples N6S5MW-X
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fukushima, Y.; Okada, A.; Kawasumi, M.; Kurauchi, T.; Kamigaito, O. Swelling behaviour of montmorillonite by poly-6-amide. Clay Miner. 1988, 23, 27–34. [Google Scholar] [CrossRef]
- Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Karauchi, T.; Kamigaito, O. Synthesis of nylon-6-clay hybrid by montmorillonite intercalated with ε-caprolactam. J. Polymer Sci. A Polym. Chem. 1993, 31, 983–986. [Google Scholar] [CrossRef]
- Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Karauchi, T.; Kamigaito, O. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 1993, 8, 1185–1189. [Google Scholar] [CrossRef]
- Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40, 1511–1575. [Google Scholar] [CrossRef]
- Fornes, T.D.; Paul, D.R. Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 2003, 44, 4993–5013. [Google Scholar] [CrossRef]
- Pavlidoua, S.; Papaspyrides, C.D. A review on polymer–layered silicate nanocompo-sites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Kiliaris, P.; Papaspyrides, C. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958. [Google Scholar] [CrossRef]
- Gul, S.; Kausar, A.; Muhammad, B.; Jabeen, S. Research Progress on Properties and Applications of Polymer/Clay Nanocomposite. Polym. Technol. Eng. 2016, 55, 684–703. [Google Scholar] [CrossRef]
- Delogu, F.; Gorrasi, G.; Sorrentino, A. Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Prog. Mater. Sci. 2017, 86, 75–126. [Google Scholar] [CrossRef]
- Beyer, G. Nanocomposites: A new class of flame retardants for polymers. Plast. Addit. Compd. 2002, 4, 22–28. [Google Scholar] [CrossRef]
- Chin, I.-J.; Thurn-Albrecht, T.; Kim, H.-C.; Russell, T.P.; Wang, J. On exfoliation of montmorillonite in epoxy. Polymer 2001, 42, 5947–5952. [Google Scholar] [CrossRef]
- Wu, S.H.; Wang, F.Y.; Ma, C.C.M.; Chang, W.C.; Kuo, C.T.; Kuan, H.C.; Chen, W.J. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide 6 and polyamide 6/clay nanocomposites. Mater. Lett. 2001, 49, 327–333. [Google Scholar] [CrossRef]
- Da Paz, R.A.; Damião Leite, A.M.; Araújo, E.M.; da Nóbrega Medeiros, V.; Alves de Melo, T.J.; Pessan, L.A. Mechanical and thermomechanical properties of polyamide 6/Brazilian organoclay nanocomposites. Polim. Ciência e Tecnol. 2016, 26, 52–60. [Google Scholar] [CrossRef]
- Nayak, B.A.; Shubham; Prusty, R.K.; Ray, B.C. Effect of nanosilica and nanoclay reinforcement on flexural and thermal properties of glass fiber/epoxy composites. Mater. Today Proc. 2020, 33, 5098–5102. [Google Scholar] [CrossRef]
- Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A Review of the Synthesis and Applications of Polymer–Nanoclay Composites. Appl. Sci. 2018, 8, 1696. [Google Scholar] [CrossRef] [Green Version]
- Abulyazied, D.E.; Ene, A. An Investigative Study on the Progress of Nanoclay-Reinforced Polymers: Preparation, Properties, and Applications: A Review. Polymer 2021, 13, 4401. [Google Scholar] [CrossRef]
- Kakuta, T.; Baba, Y.; Yamagishi, T.-A.; Ogoshi, T. Supramolecular exfoliation of layer silicate clay by novel cationic pillar[5]arene intercalants. Sci. Rep. 2021, 11, 10637. [Google Scholar] [CrossRef]
- Trujillano, R.; Rico, E.; Vicente, M.; Herrero, M.; Rives, V. Microwave radiation and mechanical grinding as new ways for preparation of saponite-like materials. Appl. Clay Sci. 2010, 48, 32–38. [Google Scholar] [CrossRef]
- Trujillano, R.; Rico, E.; Vicente, M.; Rives, V.; Ciuffi, K.; Cestari, A.; Gil, A.; Korili, S. Rapid microwave-assisted synthesis of saponites and their use as oxidation catalysts. Appl. Clay Sci. 2011, 53, 326–330. [Google Scholar] [CrossRef]
- Trujillano, R.; González, B.; Rives, V. Phase Change Materials (PCMs) Based in Paraffin/Synthetic Saponite Used as Heat Storage Composites. Energies 2021, 14, 7414. [Google Scholar] [CrossRef]
- Kawi, S.; Yao, Y. Saponite catalysts with systematically varied Mg/Ni ratio: Synthesis, characterization, and catalysis. Microporous Mesoporous Mater. 1999, 33, 49–59. [Google Scholar] [CrossRef]
- Fukushima, Y.; Inagaki, S. Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J. Incl. Phenom. Macrocucl. Chem. 1987, 5, 473–482. [Google Scholar] [CrossRef]
- Suquet, H.; de la Calle, C.; Pezerat, H. Swelling and structural organization of saponite. Clays. Clay. Min. 1975, 23, 1–9. [Google Scholar] [CrossRef]
- MacEwan, D.C.M. Montmorillonite Minerals. In The X-ray Identification and Crystal Structures of Clay Minerals, 2nd ed.; Brown, G., Ed.; Mineralogical Society: London, UK, 1961; pp. 142–207. [Google Scholar]
- Prihod’ko, R.; Hensen, E.J.M.; Sychev, M.; Stolyarova, I.; Shubina, T.E.; Astrelin, I.; Van Santen, R.A. Physicochemical and catalytic characterization of non-hydrothermally synthesized Mg−, Ni− and Mg−Ni− saponite-like materials. Microporous Mesoporous Mater. 2004, 69, 49–63. [Google Scholar] [CrossRef]
- Ahlrichs, J.L.; Serna, C.; Serratosa, J.M. Structural hydroxyls in sepiolites. Clays Clay Min. 1975, 23, 119–124. [Google Scholar] [CrossRef]
- Madejová, J. FTIR techniques in clay mineral studies. Vib. Spectroac. 2003, 31, 1–10. [Google Scholar] [CrossRef]
- Mackenzie, R.C. Simple phyllosilicates based on gibbsite-and brucite-like sheets. In Differential Thermal Analysis; Mackenzie, R.C., Ed.; Academic Press: London, UK; New York, NY, USA, 1970; Volume 1, pp. 498–538. [Google Scholar]
- Vicente, M.A.; Lambert, J.-F. Synthesis of Pt pillared clay nanocomposite catalysts from [PtII(NH3)4]Cl2 precursor. Phys. Chem. Chem. Phys. 2001, 3, 4843–4852. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.E.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer Science+Business Media, B.V.: Amsterdam, The Netherlands, 2004; ISBN 978-1-4020-2303-3. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Absorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Schaep, J.; Wilms, D.; Vandecasteele, C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 1999, 156, 29–41. [Google Scholar] [CrossRef]
- Katoh, Y.; Okamoto, M. Crystallization controlled by layered silicates in nylon 6–clay nano-composite. Polymer 2009, 50, 4718–4726. [Google Scholar] [CrossRef]
- Kherroub, D.E.; Belbachir, M.; Lamouri, S.; Bouhadjar, L.; Chikh, K. Synthesis of Polyamide-6/Montmorillonite Nanocomposites by Direct In-situ Polymerization Catalysed by Exchanged Clay. Oriental J. Chem. 2013, 29, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Loo, L.S.; Gleason, K.K. Insights into Structure and Mechanical Behavior of α and γ Cristal Forms of Nylon-6 at Low Strain by Infrared Studies. Macromolecules 2003, 36, 6114–6126. [Google Scholar] [CrossRef]
- Jakeš, J.; Krimm, S. Normal coordinate analyses of molecules with the amide group. Spectrochim. Acta Part A Mol. Spectrosc. 1971, 27, 35–63. [Google Scholar] [CrossRef] [Green Version]
- Ishisue, T.; Okamoto, M.; Tashiro, K. Real-time investigation of crystallization in nylon 6-clay nano-composite probed by infrared spectroscopy. Polymer 2010, 51, 5585–5591. [Google Scholar] [CrossRef]
- Fornes, T.; Paul, D. Crystallization behavior of nylon 6 nanocomposites. Polymer 2003, 44, 3945–3961. [Google Scholar] [CrossRef]
- Pramoda, K.P.; Liu, T.; Liu, Z.; He, C.; Sue, H.J. Thermal degradation behavior of polyamide 6/clay nanocomposites. Polym. Degrad. Stab. 2003, 81, 47–56. [Google Scholar] [CrossRef]
Sample | Description | Procedure |
---|---|---|
SCA | Delaminated synthetic saponite | MW + stirring |
SCACapro | SCA intercalated with ε-caprolactam | Aqueous suspension |
N6 | Nylon-6 | Polymerisation of ε-caprolactam in muffle/6 h |
N6S5-6 | Nylon-6/SCA (5% w/w) nanocomposite | Polymerisation of SCACapro in muffle/6 h |
N6S5-24 | Nylon-6/SCA (5% w/w) nanocomposite | Polymerisation of SCACapro in muffle/24 h |
N6S5-48 | Nylon-6/SCA (5% w/w) nanocomposite | Polymerisation of SCACapro in muffle/48 h |
N6S5MW-6 | Nylon-6/SCA (5% w/w) nanocomposite | Polymerisation of SCACapro in MW oven/6 h |
N6S5MW-8 | Nylon-6/SCA (5% w/w) nanocomposite | Polymerisation of SCACapro in MW oven/8 h |
N6S5MW-10 | Nylon-6/SCA (5% w/w) nanocomposite | Polymerisation of SCACapro in MW oven/10 h |
N6 | N6S5MW-8 | Vibrational Mode |
---|---|---|
3684 | 3684 | νO–H (free) |
3436 | 3436 | νN–H + νO–H (water molecules) |
3299 | 3299 | νN–H |
3085 | 3088 | νN–H (amide group overtone) |
2943 | 2930 | νC–H-ass |
2869 | 2858 | νC–H-sym |
1628 | 1628 | νC=O |
1547 | 1547 | νN–C |
1260, 1200, 1120, 960 | 1260, 1200, 1120, 960 | νC–H and δC–H |
928 | 928 | νC–C |
730 | 730 | νroc–C–H |
690 | 690 | νN–H (amide V) |
620 | 620 | νC=O (γ) |
576 | 576 | νC=O (α) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrid, A.; Pérez, E.; Vicente, M.Á.; Rives, V.; Trujillano, R. Fast and Clean Synthesis of Nylon-6/Synthetic Saponite Nanocomposites. Materials 2022, 15, 163. https://doi.org/10.3390/ma15010163
Madrid A, Pérez E, Vicente MÁ, Rives V, Trujillano R. Fast and Clean Synthesis of Nylon-6/Synthetic Saponite Nanocomposites. Materials. 2022; 15(1):163. https://doi.org/10.3390/ma15010163
Chicago/Turabian StyleMadrid, Alejandro, Elena Pérez, Miguel Ángel Vicente, Vicente Rives, and Raquel Trujillano. 2022. "Fast and Clean Synthesis of Nylon-6/Synthetic Saponite Nanocomposites" Materials 15, no. 1: 163. https://doi.org/10.3390/ma15010163
APA StyleMadrid, A., Pérez, E., Vicente, M. Á., Rives, V., & Trujillano, R. (2022). Fast and Clean Synthesis of Nylon-6/Synthetic Saponite Nanocomposites. Materials, 15(1), 163. https://doi.org/10.3390/ma15010163