On the Applicability of Camera Lens Protectors in Emergency Luminescence Dosimetry
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Basic OSL Properties: Sample Background, CW-OSL Decay, Repeatability of the OSL Signal
3.2. Reusability and Sensitivity Changes
3.3. Dose–Response and Theoretical Detection Limit
3.4. Fading in Darkness and in Daylight
3.5. Dose Recovery Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mrozik, A.; Marczewska, B.; Bilski, P.; Gieszczyk, W. Investigation of OSL signal of resistors from mobile phones for accidental dosimetry. Radiat. Meas. 2014, 71, 466–470. [Google Scholar] [CrossRef] [Green Version]
- Bassinet, C.; Trompier, F.; Clairand, I. Radiation accident dosimetry on electronic components by OSL. Health Phys. 2010, 98, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Bassinet, C.; Woda, C.; Bortolin, E.; Della Monaca, S.; Fattibene, P.; Quattrini, M.C.; Bulanek, B.; Ekendahl, D.; Burbidge, I.; Cauwels, V.; et al. Retrospective radiation dosimetry using OSL of electronic components: Results of an inter-laboratory comparison. Radiat. Meas. 2014, 71, 475–479. [Google Scholar] [CrossRef]
- Pascu, A.; Vasiliniuc, S.; Zeciu-Dolha, M.; Timar-Gabor, A. The potential of luminescence signals from electronic components for accident dosimetry. Radiat. Meas. 2013, 56, 384–388. [Google Scholar] [CrossRef]
- Sholom, S.; McKeever, S.W.S. Developments for emergency dosimetry using components of mobile phones. Radiat. Meas. 2017, 106, 416–422. [Google Scholar] [CrossRef]
- Discher, M.; Kim, H.; Lee, J. Thermally assisted IRSL and VSL measurements of display glass from mobile phones for retrospective dosimetry. Nucl. Eng. Technol. 2021. [Google Scholar] [CrossRef]
- Kim, H.; Discher, M.; Kim, M.C.; Woda, C.; Lee, J. Thermally assisted optically stimulated luminescence protocol of mobile phone substrate glasses for accident dosimetry. Radiat. Meas. 2021, 146, 106625. [Google Scholar] [CrossRef]
- Sholom, S.; McKeever, S.W.; Chandler, J.R. OSL dosimetry with protective glasses of modern smartphones: A fiber-optic, non-destructive approach. Radiat. Meas. 2020, 136, 106382. [Google Scholar] [CrossRef]
- Sholom, S.; McKeever, S.W.S. A non-destructive, high-sensitivity, emergency dosimetry method using OSL from protective back-glasses from smartphones. Radiat. Meas. 2021, 147, 106646. [Google Scholar] [CrossRef]
- Chandler, J.R.; Sholom, S.; McKeever, S.W.; Seagraves, D.T.; Hall, H.L. Optically stimulated luminescence dosimetry on mobile phone back protective glass. Phys. Open 2021, 7, 100072. [Google Scholar] [CrossRef]
- Beerten, K.; Woda, C.; Vanhavere, F. Thermoluminescence dosimetry of electronic components from personal objects. Radiat. Meas. 2009, 44, 620–625. [Google Scholar] [CrossRef]
- Ademola, J.A.; Woda, C. Thermoluminescence of electronic components from mobile phones for determination of accident doses. Radiat. Meas. 2017, 104, 13–21. [Google Scholar] [CrossRef]
- Kim, H.; Kim, M.C.; Lee, J.; Chang, I.; Lee, S.K.; Kim, J.L. Thermoluminescence of AMOLED substrate glasses in recent mobile phones for retrospective dosimetry. Radiat. Meas. 2019, 122, 53–56. [Google Scholar] [CrossRef]
- Discher, M.; Bortolin, E.; Woda, C. Investigations of touchscreen glasses from mobile phones for retrospective and accident dosimetry. Radiat. Meas. 2016, 89, 44–51. [Google Scholar] [CrossRef]
- Discher, M.; Woda, C. Thermoluminescence of glass display from mobile phones for retrospective and accident dosimetry. Radiat. Meas. 2013, 53, 12–21. [Google Scholar] [CrossRef]
- Bassinet, C.; Trompier, F.; Clairand, I. Radiation accident dosimetry on glass by TL and EPR spectrometry. Health Phys. 2010, 98, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Mrozik, A.; Marczewska, B.; Bilski, P.; Kłosowski, M. Investigation of thermoluminescence properties of mobile phone screen displays as dosimeters for accidental dosimetry. Radiat. Phys. Chem. 2014, 104, 88–92. [Google Scholar] [CrossRef]
- Bassinet, C.; Le Bris, W. TL investigation of glasses from mobile phone screen protectors for radiation accident dosimetry. Radiat. Meas. 2020, 136, 106384. [Google Scholar] [CrossRef]
- Chandler, J.R.; Sholom, S.; McKeever, S.W.S.; Hall, H.L. Thermoluminescence and phototransferred thermoluminescence dosimetry on mobile phone protective touchscreen glass. J. Appl. Phys. 2019, 126, 074901. [Google Scholar] [CrossRef]
- Mandowski, A.; Mandowska, E.; Kokot, L.; Bilski, P.; Olko, P.; Marczewska, B. Portable system for identifying radiation hazards using OSL microdetectors. Elektron. Konstr. Technol. Zastos. 2010, 51, 136–138. [Google Scholar]
- Singh, A.K.; Menon, S.N.; Kadam, S.Y.; Koul, D.K.; Datta, D. OSL properties of three commonly available salt brands in India for its use in accident dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2018, 419, 38–43. [Google Scholar] [CrossRef]
- Biernacka, M.; Majgier, R.; Maternicki, K.; Liang, M.; Mandowski, A. Peculiarities of optically stimulated luminescence in halite. Radiat. Meas. 2016, 90, 247–251. [Google Scholar] [CrossRef]
- Murray, A.S.; Wintle, A.G. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat. Meas. 2003, 37, 377–381. [Google Scholar] [CrossRef]
- Bailiff, I.K.; Sholom, S.; McKeever, S.W.S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. Radiat. Meas. 2016, 94, 83–139. [Google Scholar] [CrossRef] [Green Version]
Designation | Manufacturer | Phone Model | Thickness [mm] | Diameter [mm] | Hardness |
---|---|---|---|---|---|
CSP-i | Camera Screen Protector | iPhone 12 | 0.3 | 9.5 | 9 H |
CF-i | Camera Film | iPhone 12 | 0.3 | 9.5 | 9 H |
CSP-s | Camera Screen Protector | Samsung Galaxy A32 | 0.3 | 8 | 9 H |
CF-s | Camera Film | Samsung Galaxy A32 | 0.3 | 8 | 9 H |
MK-i | 3 mk Protection | iPhone 12 | 0.2 | 9.3 | 7 H |
Sample | MDD (mGy) | ||
---|---|---|---|
Immediately after Irradiation | 1 h after Irradiation | 1 Day after Irradiation | |
CSP-i | 16 ± 1 | 73 ± 9 | 115 ± 26 |
CF-i | 36 ± 1 | 186 ± 21 | 292 ± 39 |
CSP-s | 38 ± 1 | 173 ± 21 | 272 ± 63 |
CF-s | 50 ± 1 | 229 ± 28 | 360 ± 82 |
Sample | Nominal Dose (Gy) | Recovered Dose (Gy) | Deviation from the Nominal Dose (%) |
---|---|---|---|
CSP-i | 0.26 | 0.19 ± 0.13 | −27% |
CSP-s | 0.27 ± 0.12 | 5% | |
CF-i | 0.38 ± 0.14 | 49% | |
CF-s | 0.16 ± 0.15 | −40% | |
CSP-i | 1.77 | 2.18 ± 0.48 | 23% |
CSP-s | 1.43 ± 0.30 | −19% | |
CF-i | 1.70 ± 0.38 | −4% | |
CF-s | 2.79 ± 0.59 | 58% | |
CSP-i | 2.95 | 2.48 ± 0.54 | −16% |
CSP-s | 2.79 ± 0.59 | −5% | |
CF-i | 2.61 ± 0.58 | −12% | |
CF-s | 3.81 ± 0.80 | 29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majgier, R.; Chamerski, K.; Mandowski, A. On the Applicability of Camera Lens Protectors in Emergency Luminescence Dosimetry. Materials 2022, 15, 193. https://doi.org/10.3390/ma15010193
Majgier R, Chamerski K, Mandowski A. On the Applicability of Camera Lens Protectors in Emergency Luminescence Dosimetry. Materials. 2022; 15(1):193. https://doi.org/10.3390/ma15010193
Chicago/Turabian StyleMajgier, Renata, Kordian Chamerski, and Arkadiusz Mandowski. 2022. "On the Applicability of Camera Lens Protectors in Emergency Luminescence Dosimetry" Materials 15, no. 1: 193. https://doi.org/10.3390/ma15010193
APA StyleMajgier, R., Chamerski, K., & Mandowski, A. (2022). On the Applicability of Camera Lens Protectors in Emergency Luminescence Dosimetry. Materials, 15(1), 193. https://doi.org/10.3390/ma15010193