Optimization of Machining Parameters for Milling Zirconia Ceramics by Polycrystalline Diamond Tool
Abstract
:1. Introduction
2. Simulation Details
2.1. Constitutive Model
2.2. Three-Dimensional Finite Element Model
3. Results and Discussion
3.1. Simulation Results
3.2. Response Surface Analysis
3.3. Parameter Optimization
3.4. Model Validation with Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Wu, X.; Shi, J. Additive manufacturing of zirconia ceramics: A state-of-the-art review. J. Mater. Res. Technol. 2020, 9, 9029–9048. [Google Scholar] [CrossRef]
- Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sorrell, C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J. Prosthet. Dent. 2018, 119, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Pekkan, G.; Pekkan, K.; Bayindir, B.Ç.; Özcan, M.; Karasu, B. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dent. Mater. J. 2020, 39, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Guo, M.; Yin, S.; Chen, F.; Huang, S.; Lu, A.; Guo, Y. An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing. Appl. Surf. Sci. 2018, 444, 569–577. [Google Scholar] [CrossRef]
- Xiao, X.; Zheng, K.; Liao, W.; Meng, H. Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics. Int. J. Mach. Tool Manu. 2016, 104, 58–67. [Google Scholar] [CrossRef]
- Piconi, C.; Maccauro, G. Zirconia as a ceramic biomaterial. Biomaterials 1999, 20, 1–25. [Google Scholar] [CrossRef]
- Manicone, P.F.; Iommetti, P.R.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef]
- Pagano, S.; Lombardo, G.; Caponi, S.; Costanzi, E.; Di Michele, A.; Bruscoli, S.; Xhimitiku, I.; Coniglio, M.; Valenti, C.; Mattarelli, M. Bio-mechanical characterization of a CAD/CAM PMMA resin for digital removable prostheses. Dent. Mater. 2021, 37, e118–e130. [Google Scholar] [CrossRef]
- Shanyong, L.; Yuling, W.; Shufeng, S.; Jing, S.; Qingyu, L.; Jin, W. Characterization and mechanism of porous silicon carbide ceramics processed by high temperature chemical corrosion. J. Aeronaut. Mater. 2019, 39, 16–24. [Google Scholar]
- Pan, P.; Wang, X.; Ji, Y.; Dong, W.; Zhang, L.; Wang, L.; Zhang, M. One-step synthesis of ZrO2 nanopowders dispersed with graphene by ball milling. Ceram. Int. 2020, 46, 24799–24804. [Google Scholar] [CrossRef]
- Xu, J.; Li, L.; Chen, M.; Paulo Davim, J. An experimental investigation on milling features of fully-sintered zirconia ceramics using PCD tools. Mater. Manuf. Processes 2021, 1–9. [Google Scholar] [CrossRef]
- Na, Y.; Lee, U.S.; Kim, B.H. Experimental Study on Micro-Grinding of Ceramics for Micro-Structuring. Appl. Sci. 2021, 11, 8119. [Google Scholar] [CrossRef]
- Lindvall, R.; Lenrick, F.; Persson, H.; M’Saoubi, R.; Ståhl, J.-E.; Bushlya, V. Performance and wear mechanisms of PCD and pcBN cutting tools during machining titanium alloy Ti6Al4V. Wear 2020, 454, 203329. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. Int. J. Mach. Tool Manu. 2003, 43, 811–823. [Google Scholar] [CrossRef]
- Bian, R.; Ferraris, E.; He, N.; Reynaerts, D. Process investigation on meso-scale hard milling of ZrO2 by diamond coated tools. Precis. Eng. 2014, 38, 82–91. [Google Scholar] [CrossRef]
- Ferraris, E.; Mestrom, T.; Bian, R.; Reynaerts, D.; Lauwers, B. Machinability investigation on high speed hard turning of ZrO2 with PCD tools. Procedia CIRP 2012, 1, 500–505. [Google Scholar] [CrossRef]
- Bian, R.; Ding, W.; Liu, S.; He, N. Research on high performance milling of engineering ceramics from the perspective of cutting variables setting. Materials 2019, 12, 122. [Google Scholar] [CrossRef] [Green Version]
- Rong, B.; He, N.; Wenzheng, D.; Liu, S. A study on the tool wear of PCD micro end mills in ductile milling of ZrO2 ceramics. Int. J. Adv. Manuf. Technol. 2017, 92, 2197–2206. [Google Scholar]
- Wan, L.; Li, L.; Deng, Z.; Deng, Z.; Liu, W. Thermal-mechanical coupling simulation and experimental research on the grinding of zirconia ceramics. J. Manuf. Process 2019, 47, 41–51. [Google Scholar] [CrossRef]
- Li, C.; Hou, Y.; Liu, Z.; Ding, Y. Investigation into temperature field of nano-zirconia ceramics precision grinding. Int. J. Abras. Technol. 2011, 4, 77–89. [Google Scholar] [CrossRef]
- Jianxun, X.; Quanping, S. Analysis on Finite Element Simulation with Zirconia Ceramic in Cutting Processing. China Ceram. 2012, 10. [Google Scholar]
- Deng, B.; Yang, M.; Zhou, L.; Wang, H.; Yan, R.; Peng, F. Smoothed particle hydrodynamics (SPH) simulation and experimental investigation on the diamond fly-cutting milling of zirconia ceramics. Procedia CIRP 2019, 82, 202–207. [Google Scholar] [CrossRef]
- Murugesan, M.; Jung, D.W. Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials 2019, 12, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Wang, X.; Sun, F. Tribological behavior and cutting performance of monolayer, bilayer and multilayer diamond coated milling tools in machining of zirconia ceramics. Surf. Coat. Technol. 2018, 353, 49–57. [Google Scholar] [CrossRef]
- Binder, M.; Klocke, F.; Döbbeler, B. An advanced numerical approach on tool wear simulation for tool and process design in metal cutting. Simul. Model. Pract. Th. 2017, 70, 65–82. [Google Scholar] [CrossRef]
- Zeilmann, R.P.; Zanella, C. PCD coating polishing effect on the tool wear in high-speed milling of graphite. Int. J. Adv. Manuf. Technol. 2020, 108, 2579–2593. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, R.; Liu, X.; Chen, L. Contract designing for a supply chain with uncertain information based on confidence level. Appl. Soft Comput. 2017, 56, 617–631. [Google Scholar] [CrossRef]
- Miraboutalebi, S.M.; Nikouzad, S.K.; Peydayesh, M.; Allahgholi, N.; Vafajoo, L.; McKay, G. Methylene blue adsorption via maize silk powder: Kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Saf. Environ. Prot. 2017, 106, 191–202. [Google Scholar] [CrossRef]
- Greenland, S.; Senn, S.J.; Rothman, K.J.; Carlin, J.B.; Poole, C.; Goodman, S.N.; Altman, D.G. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 2016, 31, 337–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
A/MPa | B/MPa | C | n | m | Tr/°C | Tm/°C |
---|---|---|---|---|---|---|
930 | 310 | 0 | 0.6 | 0.6 | 25 | 1725 |
Material | Elastic Modulus E/(Pa) | Poisson’s Ratio μ | Thermal Conductivity κ/(W/m·K) | Heat Capacity c/(J/kg·K) | Density ρ/(kg/m3) |
---|---|---|---|---|---|
Zirconia ceramics | 2.39 × 1011 | 0.3 | 2.6 | 400 | 6050 |
PCD | 1.2 × 1012 | 0.2 | 1500 | 471.5 | 3520 |
No. | Control Factors | Level | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||
1 | n/(r/min) | 4000 | 5000 | 6000 | 7000 | 8000 |
2 | vf/(mm/min) | 20 | 40 | 60 | 80 | 100 |
3 | ae/(mm) | 0.03 | 0.06 | 0.09 | 0.12 | 0.15 |
4 | ap/(mm) | 0.6 | 1.2 | 1.8 | 2.4 | 3.0 |
No. | n/(r/min) | vf/(mm/min) | ae/(mm) | ap/(mm) | F/(N) | VB/(μm) | Q/(mm3/min) |
---|---|---|---|---|---|---|---|
1 | 5000 | 80 | 0.12 | 2.4 | 396.29 | 107.31 | 23.04 |
2 | 4000 | 60 | 0.09 | 1.8 | 332.62 | 2.70 | 9.72 |
3 | 5000 | 40 | 0.06 | 2.4 | 210.37 | 102.73 | 5.76 |
4 | 6000 | 60 | 0.09 | 0.6 | 179.58 | 8.25 | 3.24 |
5 | 7000 | 80 | 0.12 | 1.2 | 219.75 | 79.39 | 11.52 |
6 | 5000 | 40 | 0.12 | 1.2 | 177.62 | 81.92 | 5.76 |
7 | 6000 | 60 | 0.09 | 1.8 | 202.43 | 89.44 | 3.24 |
8 | 7000 | 40 | 0.12 | 1.2 | 141.08 | 116.97 | 5.76 |
9 | 8000 | 60 | 0.09 | 1.8 | 146.79 | 86.31 | 9.72 |
10 | 7000 | 40 | 0.06 | 1.2 | 106.08 | 79.43 | 2.88 |
11 | 6000 | 100 | 0.09 | 1.8 | 311.32 | 86.18 | 16.2 |
12 | 7000 | 40 | 0.06 | 2.4 | 171.49 | 142.52 | 5.76 |
13 | 7000 | 80 | 0.12 | 2.4 | 324.96 | 143.52 | 23.04 |
14 | 6000 | 20 | 0.09 | 1.8 | 169.13 | 117.32 | 3.24 |
15 | 7000 | 40 | 0.12 | 2.4 | 271.42 | 174.30 | 11.52 |
16 | 7000 | 80 | 0.06 | 2.4 | 222.31 | 108.54 | 11.52 |
17 | 6000 | 60 | 0.15 | 1.8 | 261.54 | 167.51 | 16.2 |
18 | 6000 | 60 | 0.09 | 1.8 | 219.73 | 86.45 | 9.72 |
19 | 6000 | 60 | 0.03 | 1.8 | 134.03 | 64.75 | 3.24 |
20 | 6000 | 60 | 0.09 | 1.8 | 205.13 | 106.89 | 9.72 |
21 | 7000 | 80 | 0.06 | 1.2 | 178.28 | 27.84 | 5.76 |
22 | 6000 | 60 | 0.09 | 1.8 | 187.19 | 90.34 | 9.72 |
23 | 5000 | 80 | 0.06 | 1.2 | 187.86 | 54.75 | 5.76 |
24 | 5000 | 80 | 0.12 | 1.2 | 184.71 | 76.46 | 11.52 |
25 | 6000 | 60 | 0.09 | 1.8 | 227.94 | 82.34 | 9.72 |
26 | 6000 | 60 | 0.09 | 3.0 | 356.75 | 175.33 | 16.2 |
27 | 5000 | 80 | 0.06 | 2.4 | 321.53 | 52.85 | 11.52 |
28 | 6000 | 60 | 0.09 | 1.8 | 206.95 | 84.90 | 9.72 |
29 | 5000 | 40 | 0.12 | 2.4 | 331.63 | 116.29 | 11.52 |
30 | 5000 | 40 | 0.06 | 1.2 | 226.95 | 58.30 | 2.88 |
Source | F | VB | Q | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | df | Sum of Squares | df | Mean Square | F-Value | p-Value | Mean Square | F-Value | p-Value | Sum of Squares | df | Mean Square | F-Value | p-Value | |
Model | 143,000 | 14 | 48,094.43 | 14 | 3435.32 | 12.70 | <0.0001 | 3435.32 | 12.70 | <0.0001 | 811.81 | 10 | 81.18 | 743.85 | <0.0001 |
24,913.15 | 1 | 6309.58 | 1 | 6309.58 | 23.33 | 0.0002 | 6309.58 | 23.33 | 0.0002 | 0.00 | 1 | 0.00 | 1.04 | 1.0000 | |
19,461.52 | 1 | 3372.04 | 1 | 3372.04 | 12.47 | 0.0030 | 3372.04 | 12.47 | 0.0030 | 251.94 | 1 | 251.94 | 2308.50 | <0.0001 | |
19,131.47 | 1 | 9389.17 | 1 | 9389.17 | 34.71 | <0.0001 | 9389.17 | 34.71 | <0.0001 | 251.94 | 1 | 251.94 | 2308.50 | <0.0001 | |
58,214.49 | 1 | 20,849.44 | 1 | 20,849.44 | 77.08 | <0.0001 | 20,849.44 | 77.08 | <0.0001 | 251.94 | 1 | 251.94 | 2308.50 | <0.0001 | |
775.76 | 1 | 462.90 | 1 | 462.90 | 1.71 | 0.2105 | 462.90 | 1.71 | 0.2105 | ||||||
1147.69 | 1 | 112.47 | 1 | 112.47 | 0.42 | 0.5288 | 112.47 | 0.42 | 0.5288 | ||||||
1184.91 | 1 | 1552.36 | 1 | 1552.36 | 5.74 | 0.0301 | 1552.36 | 5.74 | 0.0301 | ||||||
4.92 | 1 | 196.84 | 1 | 196.84 | 0.73 | 0.4070 | 196.84 | 0.73 | 0.4070 | 1 | |||||
1626.31 | 1 | 40.01 | 1 | 40.01 | 0.15 | 0.7059 | 40.01 | 0.15 | 0.7059 | ||||||
8770.79 | 1 | 0.01 | 1 | 0.01 | 0.00 | 0.9945 | 0.01 | 0.00 | 0.9945 | ||||||
1235.29 | 1 | 2897.50 | 1 | 2897.50 | 10.70 | 0.0052 | 2897.50 | 10.70 | 0.0052 | ||||||
1283.61 | 1 | 445.42 | 1 | 445.42 | 1.65 | 0.2189 | 445.42 | 1.65 | 0.2189 | ||||||
389.65 | 1 | 389.65 | 0.54 | 0.4736 | 1598.29 | 1 | 1598.29 | 5.91 | 0.0281 | ||||||
5243.15 | 1 | 5243.15 | 7.27 | 0.0166 | 65.03 | 1 | 65.03 | 0.24 | 0.6310 | ||||||
Residual | 10,813.15 | 15 | 720.88 | — | — | 4057.11 | 15 | 270.47 | — | — | 2.07 | 19 | 0.11 | — | — |
Lack of Fit | 3676.14 | 10 | 367.61 | 4.86 | 0.0474 | 3676.14 | 10 | 367.61 | 4.82 | 0.0482 | 0.00 | 14 | 0.15 | — | — |
Pure Error | 1008.30 | 5 | 210.66 | — | — | 380.97 | 5 | 76.19 | — | — | 813.89 | 5 | 0.00 | — | — |
Cor Total | 153,800 | 29 | — | — | — | 52,151.54 | 29 | — | — | — | 29 | — | — | — |
1 | 2 | 3 | Average | Predicted Value | |
---|---|---|---|---|---|
F/(N) | 208.81 | 221.69 | 193.75 | 208.08 | 234.81 |
VB/(μm) | 29.67 | 30.84 | 27.22 | 29.24 | 33.40 |
Q/(mm3/min) | 38.40 | 40.30 | 47.10 | 41.87 | 44.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Dong, S.; Li, X.; Zhao, Z.; Dong, S.; An, L. Optimization of Machining Parameters for Milling Zirconia Ceramics by Polycrystalline Diamond Tool. Materials 2022, 15, 208. https://doi.org/10.3390/ma15010208
Yan X, Dong S, Li X, Zhao Z, Dong S, An L. Optimization of Machining Parameters for Milling Zirconia Ceramics by Polycrystalline Diamond Tool. Materials. 2022; 15(1):208. https://doi.org/10.3390/ma15010208
Chicago/Turabian StyleYan, Xuefeng, Shuliang Dong, Xianzhun Li, Zhonglin Zhao, Shuling Dong, and Libao An. 2022. "Optimization of Machining Parameters for Milling Zirconia Ceramics by Polycrystalline Diamond Tool" Materials 15, no. 1: 208. https://doi.org/10.3390/ma15010208
APA StyleYan, X., Dong, S., Li, X., Zhao, Z., Dong, S., & An, L. (2022). Optimization of Machining Parameters for Milling Zirconia Ceramics by Polycrystalline Diamond Tool. Materials, 15(1), 208. https://doi.org/10.3390/ma15010208