Combining H-Adaptivity with the Element Splitting Method for Crack Simulation in Large Structures
Abstract
:1. Introduction
2. The H-Adaptive Element Splitting Method
2.1. Mesh Refinement Using H-Adaptivity
2.2. Representation of Cracks
3. Numerical Implementation in LEFM Using the H-AES Method
3.1. Mode I Loading with a Horizontal Crack
3.2. Mixed-Mode Loading with an Inclined Crack
4. Discussion
- The application of h-adaptivity method enables the h-AES method to effectively create very fine meshes while keeping most of the global mesh structured and coarse. Comparing with the application of fine mesh to the entire model, the introduction of h-adaptivity could significantly reduce the computational cost.
- The numerical results of the h-AES method were verified against analytical solutions from LEFM scenarios with good correspondence. As a result, in numerical models mostly consisting of coarse meshes, more local details of FEM-based crack simulations could be revealed by the mesh refinement.
- Considering engineering applications, compared with the frequently applied element deletion method, no element is deleted in the application of the element splitting method. As a result, the drawbacks caused by element deletion, such as the loss of mass and energy, are avoided.
- The element splitting method integrated in the h-AES method is based on the edge separation method, which means that, in the h-AES method, the crack paths still have a strong mesh dependency. However, as the element splitting method is applied, numerical cracks can propagate in the diagonal line of quadrilateral elements, which can provide more flexible crack paths—in particular for structured meshes that initially only included quadrilateral elements. Hence, the extent of the mesh-dependency of crack paths is reduced.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviations
The domain of refined mesh. | The domains of refined meshes in first, second levels, and so on. | ||
The domain of original coarse mesh. | |||
The length of element edge. | The displacements of node 1, node 2, and so on. | ||
a | Half of the crack length. | ||
L | Length of the plate. | N1, N2, … | Node 1, node 2, and so on. |
B | Width of the plate. | Normal stress in x and y directions. | |
t | Thickness of the plate | ||
The distance from crack tip. | Shear stress in xy-plane. | ||
Far-field stress. | Stress intensity factor of mode I, II loading. | ||
The angle of crack in polar coordinates. | |||
β | The angle of crack on the plate. | The ratio of the distance to crack tip and half of the crack length. | |
FEM | Finite element method | ||
XFEM | Extended finite element method | ||
LEFM | Linear elastic fracture mechanics | ||
h-AES | h-adaptive element splitting |
References
- Liu, B.; Villavicencio, R.; Zhang, S.; Guedes Soares, C. A simple criterion to evaluate the rupture of materials in ship collision simulations. Mar. Struct. 2017, 54, 92–111. [Google Scholar] [CrossRef]
- Liu, B.; Pedersen, P.T.; Zhu, L.; Zhang, S. Review of experiments and calculation procedures for ship collision and grounding damage. Mar. Struct. 2018, 59, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Gruben, G.; Sølvernes, S.; Berstad, T.; Morin, D.; Hopperstad, O.S.; Langseth, M. Low-velocity impact behaviour and failure of stiffened steel plates. Mar. Struct. 2017, 54, 73–91. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, N.; Liu, P.; Liu, J.; Yu, T.; Gu, S.; Cong, Y. Dynamic fracture analysis of the linearly uncoupled and coupled physical phenomena by the variable-node multiscale XFEM. Eng. Fract. Mech. 2021, 254, 107941. [Google Scholar] [CrossRef]
- Belytschko, T.; Wong, B.L.; Plaskacz, E.J. Fission-fusion adaptivity in finite elements for nonlinear dynamics of shells. Comput. Struct. 1989, 33, 1307–1323. [Google Scholar] [CrossRef]
- Belytschko, T.; Tabbara, M. H-Adaptive finite element methods for dynamic problems, with emphasis on localization. Int. J. Numer. Methods Eng. 1993, 36, 4245–4265. [Google Scholar] [CrossRef]
- Qinami, A.; Bryant, E.C.; Sun, W.C.; Kaliske, M. Circumventing mesh bias by r- and h-adaptive techniques for variational eigenfracture. Int. J. Fract. 2019, 220, 129–142. [Google Scholar] [CrossRef]
- Demkowicz, L.; Devloo, P.; Oden, J.T. On an h-type mesh-refinement strategy based on minimization of interpolation errors. Comput. Methods Appl. Mech. Eng. 1985, 53, 67–89. [Google Scholar] [CrossRef]
- Kõrgesaar, M.; Romanoff, J. Influence of mesh size, stress triaxiality and damage induced softening on ductile fracture of large-scale shell structures. Mar. Struct. 2014, 38, 1–17. [Google Scholar] [CrossRef]
- Ehlers, S. Strain and stress relation until fracture for finite element simulations of a thin circular plate. Thin-Walled Struct. 2010, 48, 1–8. [Google Scholar] [CrossRef]
- Saykin, V.V.; Nguyen, T.H.; Hajjar, J.F.; Deniz, D.; Song, J. The effect of triaxiality on finite element deletion strategies for simulating collapse of full-scale steel structures. Eng. Struct. 2020, 210, 110364. [Google Scholar] [CrossRef]
- Wiegard, B.; Ehlers, S. Pragmatic regularization of element-dependent effects in finite element simulations of ductile tensile failure initiation using fine meshes. Mar. Struct. 2020, 74, 102823. [Google Scholar] [CrossRef]
- Storheim, M.; Alsos, H.S.; Hopperstad, O.S.; Amdahl, J. A damage-based failure model for coarsely meshed shell structures. Int. J. Impact Eng. 2015, 83, 59–75. [Google Scholar] [CrossRef]
- Ringsberg, J.W.; Amdahl, J.; Chen, B.Q.; Cho, S.R.; Ehlers, S.; Hu, Z.; Kubiczek, J.M.; Kõrgesaar, M.; Liu, B.; Marinatos, J.N.; et al. MARSTRUCT benchmark study on nonlinear FE simulation of an experiment of an indenter impact with a ship side-shell structure. Mar. Struct. 2018, 59, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Marinatos, J.N.; Samuelides, M.S. Towards a unified methodology for the simulation of rupture in collision and grounding of ships. Mar. Struct. 2015, 42, 1–32. [Google Scholar] [CrossRef]
- Ehlers, S.; Broekhuijsen, J.; Alsos, H.S.; Biehl, F.; Tabri, K. Simulating the collision response of ship side structures: A failure criteria benchmark study. Int. Shipbuild. Prog. 2008, 55, 127–144. [Google Scholar] [CrossRef]
- Gakwaya, A.; Zohra, F.; Bahri, E. Impact damage and failure response of various aircraft structures under high velocity loading. In Proceedings of the SIMULIA Customer Conference, London, England, 18–21 May 2009; pp. 1–15. [Google Scholar]
- Hu, X.F.; Haris, A.; Ridha, M.; Tan, V.B.C.; Tay, T.E. Progressive failure of bolted single-lap joints of woven fibre-reinforced composites. Compos. Struct. 2018, 189, 443–454. [Google Scholar] [CrossRef]
- Simonsen, B.C.; Törnqvist, R. Experimental and numerical modelling of ductile crack propagation in large-scale shell structures. Mar. Struct. 2004, 17, 1–27. [Google Scholar] [CrossRef]
- Song, J.H.; Wang, H.; Belytschko, T. A comparative study on finite element methods for dynamic fracture. Comput. Mech. Springer-Verl. 2008, 42, 239–250. [Google Scholar] [CrossRef]
- Pelfrene, J.; van Dam, S.; Sevenois, R.; Gilabert, F.; van Paepegem, W. Fracture simulation of structural glass by element deletion in explicit FEM. In Proceedings of the Challenging Glass 5 (CGC5) Conference on Architectural and Structural Applications of Glass, Ghent, Belgium, 16–17 June 2016; pp. 439–454. [Google Scholar]
- Moës, N.; Dolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Song, J.H.; Areias, P.M.A.; Belytschko, T. A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods Eng. 2006, 67, 868–893. [Google Scholar] [CrossRef]
- Seabra, M.R.R.; Šuštarič, P.; Cesar de Sa, J.M.A.; Rodič, T. Damage driven crack initiation and propagation in ductile metals using XFEM. Comput. Mech. 2013, 52, 161–179. [Google Scholar] [CrossRef]
- Rozylo, P.; Falkowicz, K. Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models. Compos. Struct. 2021, 273, 114298. [Google Scholar] [CrossRef]
- Stolarska, M.; Chopp, D.L.; Mos, N.; Belytschko, T. Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 2001, 51, 943–960. [Google Scholar] [CrossRef]
- Rabczuk, T.; Zi, G.; Gerstenberger, A.; Wall, W.A. A new crack tip element for the phantom-node method with arbitrary cohesive cracks. Int. J. Numer. Methods Eng. 2008, 75, 577–599. [Google Scholar] [CrossRef]
- Crété, J.P.; Longère, P.; Cadou, J.M. Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM. Comput. Methods Appl. Mech. Eng. 2014, 275, 204–233. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Wu, C. XFEM and EFG Cohesive Fracture Analysis for Brittle and Semi-Brittle Materials. In Proceedings of the 11th International LS-DYNA Users Conference, Detroit, MI, USA, 6–8 June 2010; pp. 21–32. [Google Scholar]
- Gibert, G.; Prabel, B.; Gravouil, A.; Jacquemoud, C. A 3D automatic mesh refinement X-FEM approach for fatigue crack propagation. Finite Elem. Anal. Des. 2019, 157, 21–37. [Google Scholar] [CrossRef]
- Swenson, D.V.; Ingraffea, A.R. Modeling mixed-mode dynamic crack propagation nsing finite elements: Theory and applications. Comput. Mech. 1988, 3, 381–397. [Google Scholar] [CrossRef]
- Bouchard, P.O.; Bay, F.; Chastel, Y.; Tovena, I. Crack propagation modelling using an advanced remeshing technique. Comput. Methods Appl. Mech. Eng. 2000, 189, 723–742. [Google Scholar] [CrossRef]
- Rashid, M.M. The arbitrary local mesh replacement method: An alternative to remeshing for crack propagation analysis. Comput. Methods Appl. Mech. Eng. 1998, 154, 133–150. [Google Scholar] [CrossRef]
- Kim, J.-H.; Paulino, G.H. Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading. Int. J. Mech. Mater. Des. 2004, 1, 63–94. [Google Scholar] [CrossRef]
- Azadi, H.; Khoei, A.R. Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing. Int. J. Numer. Methods Eng. 2011, 85, 1017–1048. [Google Scholar] [CrossRef]
- Xu, X.P.; Needleman, A. Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 1994, 42, 1397–1434. [Google Scholar] [CrossRef]
- Camacho, G.T.; Ortiz, M. Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 1996, 33, 2899–2938. [Google Scholar] [CrossRef]
- Pagani, M.; Perego, U. Explicit dynamics simulation of blade cutting of thin elastoplastic shells using “directional” cohesive elements in solid-shell finite element models. Comput. Methods Appl. Mech. Eng. 2015, 285, 515–541. [Google Scholar] [CrossRef] [Green Version]
- Cirak, F.; Ortiz, M.; Pandolfi, A. A cohesive approach to thin-shell fracture and fragmentation. Comput. Methods Appl. Mech. Eng. 2005, 194, 2604–2618. [Google Scholar] [CrossRef] [Green Version]
- Zavattieri, P.D. Modeling of crack propagation in thin-walled structures using a cohesive model for shell elements. J. Appl. Mech. Trans. ASME 2006, 73, 948–958. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Shen, J.; Chen, H. Simulation of crack propagation behavior of nuclear graphite by using XFEM, VCCT and CZM methods. Nucl. Mater. Energy 2021, 29, 101063. [Google Scholar] [CrossRef]
- Beaurepaire, P.; Schuëller, G.I. Modeling of the variability of fatigue crack growth using cohesive zone elements. Eng. Fract. Mech. 2011, 78, 2399–2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillerborg, A. Numerical Methods to Simulate Softening and Fracture of Concrete; Springer: Berlin/Heidelberg, Germany, 1985; ISBN 9024729602. [Google Scholar]
- Velho, L.; Gomes, J. Variable resolution 4-k meshes: Concepts and applications. Comput. Graph. Forum 2000, 19, 195–212. [Google Scholar] [CrossRef]
- Park, K.; Paulino, G.H.; Celes, W.; Espinha, R. Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture. Int. J. Numer. Methods Eng. 2012, 92, 1–35. [Google Scholar] [CrossRef]
- Paulino, G.H.; Park, K.; Celes, W.; Espinha, R. Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators. Int. J. Numer. Methods Eng. 2010, 84, 1303–1343. [Google Scholar] [CrossRef]
- Leon, S.E.; Spring, D.W.; Paulino, G.H. Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. Int. J. Numer. Methods Eng. 2014, 100, 555–576. [Google Scholar] [CrossRef]
- Spring, D.W.; Leon, S.E.; Paulino, G.H. Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture. Int. J. Fract. 2014, 189, 33–57. [Google Scholar] [CrossRef]
- Peng, G.L.; Wang, Y. heng A node split method for crack growth problem. Appl. Mech. Mater. 2012, 182–183, 1524–1528. [Google Scholar] [CrossRef]
- Choi, H.; Park, K. Removing mesh bias in mixed-mode cohesive fracture simulation with stress recovery and domain integral. Int. J. Numer. Methods Eng. 2019, 120, 1047–1070. [Google Scholar] [CrossRef]
- Ooi, E.T.; Natarajan, S.; Song, C.; Tin-Loi, F. Crack propagation modelling in functionally graded materials using scaled boundary polygons. Int. J. Fract. 2015, 192, 87–105. [Google Scholar] [CrossRef]
- Uribe-Suárez, D.; Bouchard, P.O.; Delbo, M.; Pino-Muñoz, D. Numerical Modeling of Crack Propagation with Dynamic Insertion of Cohesive Elements; Elsevier: Amsterdam, The Netherlands, 2020; Volume 227, ISBN 0013794419309. [Google Scholar]
- Westergaard, H.-M. Bearing Pressures and Cracks. J. Appl. Mech. 1939, 6, A49–A53. [Google Scholar] [CrossRef]
- Henshell, R.D.; Shaw, K.G. Crack tip finite elements are unnecessary. Int. J. Numer. Methods Eng. 1975, 9, 495–507. [Google Scholar] [CrossRef]
- Perez, N. Fracture Mechanics; Springer International Publishing: Cham, Switzerland, 2017; Volume 23, ISBN 978-3-319-24997-1. [Google Scholar]
- Chen, J.; Zhou, X.; Zhou, L.; Berto, F. Simple and effective approach to modeling crack propagation in the framework of extended finite element method. Theor. Appl. Fract. Mech. 2020, 106, 102452. [Google Scholar] [CrossRef]
- Ehlers, S.; Varsta, P. Strain and stress relation for non-linear finite element simulations. Thin-Walled Struct. 2009, 47, 1203–1217. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Length of the plate (L) | 640 mm |
Width of the plate (B) | 640 mm |
Thickness of the plate (t) | 1 mm |
Crack length (2a) | 4 mm |
Stress at boundary ( and ) | 300 MPa |
Young’s modulus | 206 GPa |
Mass density | 7900 kg/m3 |
Poisson’s Ratio | 0.3 |
Global mesh size | 32 mm |
Smallest mesh size | 0.003125 mm |
Refinement levels | 7 |
Number of nodes | 636,960 |
Number of elements | 634,036 |
Parameters | Values |
---|---|
Length of the plate (L) | 160 mm |
Width of the plate (B) | 160 mm |
Thickness of the plate (t) | 1 mm |
Crack length (2a) | 5.66 mm |
Angle of crack (β) | 45° |
Stress at boundary (σ) | 300 MPa |
Young’s modulus | 206 GPa |
Mass density | 7900 kg/m3 |
Poisson’s Ratio | 0.3 |
Global mesh size | 8 mm |
Smallest mesh size | 0.003125 mm |
Refinement levels | 5 |
Number of nodes | 276,528 |
Number of elements | 279,120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Braun, M.; Wiegard, B.; Herrnring, H.; Ehlers, S. Combining H-Adaptivity with the Element Splitting Method for Crack Simulation in Large Structures. Materials 2022, 15, 240. https://doi.org/10.3390/ma15010240
Song S, Braun M, Wiegard B, Herrnring H, Ehlers S. Combining H-Adaptivity with the Element Splitting Method for Crack Simulation in Large Structures. Materials. 2022; 15(1):240. https://doi.org/10.3390/ma15010240
Chicago/Turabian StyleSong, Shi, Moritz Braun, Bjarne Wiegard, Hauke Herrnring, and Sören Ehlers. 2022. "Combining H-Adaptivity with the Element Splitting Method for Crack Simulation in Large Structures" Materials 15, no. 1: 240. https://doi.org/10.3390/ma15010240
APA StyleSong, S., Braun, M., Wiegard, B., Herrnring, H., & Ehlers, S. (2022). Combining H-Adaptivity with the Element Splitting Method for Crack Simulation in Large Structures. Materials, 15(1), 240. https://doi.org/10.3390/ma15010240