Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method
Abstract
:1. Introduction
2. Experimental Investigation
2.1. Synthesis of Ternary Hybrid Nanoparticles
2.2. Preparation of Nanofluids
2.3. Stability of Ternary Hybrid Nanofluids
2.4. Viscosity Measurements
3. Taguchi Method
Plan of Experiments
4. Results and Discussion
4.1. Ternary Hybrid Nanoparticle Type
4.1.1. Effect of Viscosity
4.1.2. Effect of Concentration
4.1.3. Effect of Temperature
4.1.4. Effect of Shear Rate
4.2. Effect of Amplitude Sweep
4.3. Effect of Frequency Sweep
4.4. Comparison of Current Experimental Results with Viscosity Models
5. Taguchi Optimization Results
5.1. Analysis of Variance (ANOVA)
5.2. Coefficient of Factors
5.3. Data Distribution through a Linear Regression Equation
6. Conclusions
- One of the main differences between Newtonian and non-Newtonian shear thickening and dilatation in the GO-based ternary hybrid nanofluids was the concentration at which Newtonian behavior was seen.
- A possible explanation is that the reduced oxygen molecules are the reason for certain minor differences in viscosity between the two fluids. Reduced nanoparticle concentration causes the viscosity of GO-based nanofluid to increase, whereas rGO-based nanofluid viscosity decreases.
- The temperature-dependent variation in viscosity is influenced by concentration. At lower temperatures, particles are subject to Van der Waals forces, but there is only a mild attraction force at higher temperatures, which reduces viscosity. Higher temperatures necessitate agglomeration, which is critical. Other non-covalent forces, such as steric, hydrogen bonding, hydrophobic, and electrostatic attraction, account for the majority of the interactions of the nanofluids with their surroundings.
- The GO-based nanofluid behaves as a Newtonian fluid at higher concentrations, whereas the rGO behaves as a dilatant fluid or shear thickening. At lower concentrations, GO-based nanofluids exhibit similar tendencies to rGO-based ternary hybrid nanofluids.
- The linear viscoelastic (LVE) zone is present in the non-linear visco-elastic fluids under the influence of concentration, temperature, and stresses. Oscillating angle sweep tests and frequency sweep tests were used to undertake non-destructive stress evaluations—the loss modulus of nanofluids increases as the concentration increases. Plots of the loss or damping factor ratio revealed that the loss factor is higher exclusively in the viscoelastic zone with low angular frequency. However, at higher angular frequencies, it is at its minimum and constant regardless of temperature.
- As a final step in the data optimization process, the Taguchi method was used to show how input factors influence output responses by adjusting their levels and interactions. With an R-square value of 0.57666, it was discovered that the current input parameter and its interaction did not affect the viscosity output. With the same input, the shear stress response was perfectly stable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.; Choi, S.U.-S.; Li, S.; Eastman, J. Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles. J. Heat Transf. 1999, 121, 280–289. [Google Scholar] [CrossRef]
- Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Yang, L.; Ji, W.; Mao, M.; Huang, J.N. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. J. Clean. Prod. 2020, 257, 120408. [Google Scholar] [CrossRef]
- Sureshkumar, R.; Mohideen, S.T.; Nethaji, N. Heat transfer characteristics of nanofluids in heat pipes: A review. Renew. Sustain. Energy Rev. 2013, 20, 397–410. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, V.; Kumar, R.; Said, Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew. Sustain. Energy Rev. 2017, 74, 638–670. [Google Scholar] [CrossRef]
- Babar, H.; Sajid, M.U.; Ali, H.M. Viscosity of hybrid nanofluids: A critical review. Therm. Sci. 2019, 23, 1713–1754. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, A.K.; Khalid, M.; Rashmi, W.; Gupta, T.; Chan, A. Graphene based nanofluids and nanolubricants—Review of recent developments. Renew. Sustain. Energy Rev. 2016, 63, 346–362. [Google Scholar] [CrossRef]
- Mekheimer, K.S.; Hasona, W.M.; Abo-Elkhair, R.E.; Zaher, A.Z. Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: Application of cancer therapy. Phys. Lett. A 2018, 382, 85–93. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications, and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Khaliq, A.; Kafafy, R.; Salleh, H.M.; Faris, W.F. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes. Nanotechnology 2012, 23, 455106. [Google Scholar]
- Khaliq, A.; Sonawane, P.J.; Sasi, B.K.; Sahu, B.S.; Pradeep, T.; Das, S.K.; Mahapatra, N.R. Enhancement in the efficiency of polymerase chain reaction by TiO2 nanoparticles: Crucial role of enhanced thermal conductivity. Nanotechnology 2010, 21, 255704. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Pandey, K.; Debbarma, A.; Choubey, G. Numerical Investigation of heat transfer enhancement of SiO2-water based nanofluids in Light water nuclear reactor. Mater. Today Proc. 2017, 4, 10118–10122. [Google Scholar] [CrossRef]
- Zakaria, I.; Azmi, W.H.; Mohamed, W.A.N.W.; Mamat, R.; Najafi, G. Experimental Investigation of Thermal Conductivity and Electrical Conductivity of Al2O3 Nanofluid in Water—Ethylene Glycol Mixture for Proton Exchange Membrane Fuel Cell Application. Int. Commun. Heat Mass Transf. 2015, 61, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Sidik, N.A.C.; Jamil, M.M.; Japar, W.M.A.A.; Adamu, I.M. A review on preparation methods, stability and applications of hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 80, 1112–1122. [Google Scholar] [CrossRef]
- Devendiran, D.K.; Amirtham, V.A. A review on preparation, characterization, properties and applications of nanofluids. Renew. Sustain. Energy Rev. 2016, 60, 21–40. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Yan, Y.; Reay, D. A review on graphene based nanofluids: Preparation, characterization and applications. J. Mol. Liq. 2019, 279, 444–484. [Google Scholar] [CrossRef]
- Azmi, W.; Sharma, K.; Mamat, R.; Najafi, G.; Mohamad, M. The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids—A review. Renew. Sustain. Energy Rev. 2016, 53, 1046–1058. [Google Scholar] [CrossRef]
- Aybar, H.Ş.; Sharifpur, M.; Azizian, M.R.; Mehrabi, M.; Meyer, J.P. A Review of Thermal Conductivity Models for Nanofluids. Heat Transf. Eng. 2015, 36, 1085–1110. [Google Scholar] [CrossRef] [Green Version]
- Pinto, R.V.; Fiorelli, F.A.S. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl. Therm. Eng. 2016, 108, 720–739. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Languri, E.M.; Nunna, M.R. Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid. Int. Commun. Heat Mass Transf. 2016, 76, 308–315. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Rheological behaviour of nanofluids: A review. Renew. Sustain. Energy Rev. 2016, 53, 779–791. [Google Scholar] [CrossRef]
- Podskoczy, A. Beer reigns among holiday drinks, National Social-Political and Economic-Legal Journal Rzeczpospolita. Renew. Sustain. Energ. Rev. 2016, 76, 1134–1152. [Google Scholar]
- Meyer, J.P.; Adio, S.A.; Sharifpur, M.; Nwosu, P.N. The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models. Heat Transf. Eng. 2016, 37, 387–421. [Google Scholar] [CrossRef]
- Koca, H.D.; Doganay, S.; Turgut, A.; Tavman, I.H.; Saidur, R.; Mahbubul, I.M. Effect of particle size on the viscosity of nanofluids: A review. Renew. Sustain. Energy Rev. 2018, 82, 1664–1674. [Google Scholar] [CrossRef] [Green Version]
- Esfe, M.H.; Zabihi, F.; Rostamian, H.; Esfandeh, S. Experimental investigation and model development of the non-Newtonian behavior of CuO-MWCNT-10w40 hybrid nano-lubricant for lubrication purposes. J. Mol. Liq. 2018, 249, 677–687. [Google Scholar] [CrossRef]
- Kumar, V.; Sarkar, J. Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3-TiO2 hybrid nanofluid in minichannel heat sink with different mixture ratio. Powder Technol. 2019, 345, 717–727. [Google Scholar] [CrossRef]
- Amini, F.; Miry, S.Z.; Karimi, A.; Ashjaee, M. Experimental Investigation of Thermal Conductivity and Viscosity of SiO2/Multiwalled Carbon Nanotube Hybrid Nanofluids. J. Nanosci. Nanotechnol. 2019, 19, 3398–3407. [Google Scholar] [CrossRef] [PubMed]
- Hussien, A.A.; Abdullah, M.Z.; Yusop, N.M.; Al-Nimr, M.A.; Atieh, M.A.; Mehrali, M. Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube. Int. J. Heat Mass Transf. 2017, 115, 1121–1131. [Google Scholar] [CrossRef]
- Khadanga, V.; Rao, K.; Ram Vikas, K.; Ram, N.R. Rheological Behaviour of Nano Fluid. Int. J. Res. Anal. Rev. 2019, 6, 810–813. [Google Scholar] [CrossRef]
- Bhatia, E.; Banerjee, R. Hybrid silver-gold nanoparticles suppress drug resistant polymicrobial biofilm formation and intracellular infection. J. Mater. Chem. B 2020, 8, 4890–4898. [Google Scholar] [CrossRef]
- Perera, S.D.; Mariano, R.G.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K.J., Jr. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956. [Google Scholar] [CrossRef]
- Routbort, J.L.; Singh, D.; Timofeeva, E.V.; Yu, W.; France, D.M. Pumping power of nanofluids in a flowing system. J. Nanopart. Res. 2011, 13, 931–937. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mohseni-Gharyehsafa, B.; Farzaneh-Gord, M.; Jilte, R.; Kumar, R.; Chau, K.-W. Applicability of connectionist methods to predict dynamic viscosity of silver/water nanofluid by using ANN-MLP, MARS and MPR algorithms. Eng. Appl. Comput. Fluid Mech. 2019, 13, 220–228. [Google Scholar] [CrossRef]
- Selvakumar, P. Enabling Taguchi method with grey relational analysis to optimize the parameters of TiO2/ZnO heat transfer nanofluid for heat pipe application. Nano Express 2021, 2, 010034. [Google Scholar]
- Elcioglu, E.B.; Yazicioglu, A.G.; Turgut, A.; Anagun, A.S. Experimental study and Taguchi Analysis on alumina-water nanofluid viscosity. Appl. Therm. Eng. 2018, 128, 973–981. [Google Scholar] [CrossRef]
- Nikhil, M.A.N.E.; HEMADRİ, V. Study of the effect of preparation parameters on thermal conductivity of metal oxide nanofluids using Taguchi method. J. Energy Syst. 2021, 5, 149–164. [Google Scholar]
- Kumar, H.; Harsha, A. Taguchi optimization of various parameters for tribological performance of polyalphaolefins based nanolubricants. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 1262–1280. [Google Scholar] [CrossRef]
- Verma, T.N.; Rajak, U.; Dasore, A.; Afzal, A.; Manokar, A.M.; Aabid, A.; Baig, M. Experimental and empirical investigation of a CI engine fuelled with blends of diesel and roselle biodiesel. Sci. Rep. 2021, 11, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Sharath, B.N.; Venkatesh, C.V.; Afzal, A.; Aslfattahi, N.; Aabid, A.; Baig, M.; Saleh, B. Multi Ceramic Particles Inclusion in the Aluminium Matrix and Wear Characterization through Experimental and Response. Materials 2021, 14, 2895. [Google Scholar] [CrossRef]
- Aabid, A.; Hrairi, M.; Ali, J.S.M. Optimization of composite patch repair for center-cracked rectangular plate using design of experiments method. Mater. Today Proc. 2020, 27, 1713–1719. [Google Scholar] [CrossRef]
- Aabid, A.; Khan, S.A. Investigation of High-Speed Flow Control from CD Nozzle Using Design of Experiments and CFD Methods. Arab. J. Sci. Eng. 2021, 46, 2201–2230. [Google Scholar] [CrossRef]
- Al-Khalifah, T.; Aabid, A.; Khan, S.A.; Bin Azami, M.H.; Baig, M. Response surface analysis of nozzle parameters at supersonic flow through microjets. Aust. J. Mech. Eng. 2021, 13, 1–16. [Google Scholar] [CrossRef]
- Afzal, A.; Aabid, A.; Khan, A.; Khan, S.A.; Rajak, U.; Verma, T.N.; Kumar, R. Response surface analysis, clustering, and random forest regression of pressure in suddenly expanded high-speed aerodynamic flows. Aerosp. Sci. Technol. 2020, 107, 106318. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Adamu, I.M.; Jamil, M.M. Preparation Methods and Thermal Performance of Hybrid Nanofluids. J. Adv. Res. Appl. Mech. 2020, 66, 7–16. [Google Scholar] [CrossRef]
- Zayan, M.; Rasheed, A.K.; John, A.; Muniandi, S.; Fen Leo, B.; Faris, A. Synthesis and Characterization of Novel Ternary Hybrid Nanoparticles as Thermal Additives in H2O. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mohseni-Gharyehsafa, B.; Ghazvini, M.; Goodarzi, M.; Jilte, R.D.; Kumar, R. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. J. Therm. Anal. Calorim. 2020, 139, 2585–2599. [Google Scholar] [CrossRef]
- Nadooshan, A.A.; Eshgarf, H.; Afrand, M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J. Mol. Liq. 2018, 253, 169–177. [Google Scholar] [CrossRef]
- Esfahani, N.N.; Toghraie, D.; Afrand, M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: An experimental study. Powder Technol. 2018, 323, 367–373. [Google Scholar] [CrossRef]
- Huminic, G.; Huminic, A. Hybrid nanofluids for heat transfer applications—A state-of-the-art review. Int. J. Heat Mass Transf. 2018, 125, 82–103. [Google Scholar] [CrossRef]
- Huminic, G.; Huminic, A.; Dumitrache, F.; Fleacă, C.; Morjan, I. Study of the thermal conductivity of hybrid nanofluids: Recent research and experimental study. Powder Technol. 2020, 367, 347–357. [Google Scholar] [CrossRef]
- Sidik, N.A.C.; Adamu, I.M.; Jamil, M.M.; Kefayati, G.; Mamat, R.; Najafi, G. Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review. Int. Commun. Heat Mass Transf. 2016, 78, 68–79. [Google Scholar] [CrossRef]
- Hamzah, M.H.; Sidik, N.A.C.; Ken, T.L.; Mamat, R.; Najafi, G. Factors affecting the performance of hybrid nanofluids: A comprehensive review. Int. J. Heat Mass Transf. 2017, 115, 630–646. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Mirlohi, A.; Nazari, M.A.; Ghasempour, R. A review of thermal conductivity of various nanofluids. J. Mol. Liq. 2018, 265, 181–188. [Google Scholar] [CrossRef]
- Babu, J.R.; Kumar, K.K.; Rao, S.S. State-of-art review on hybrid nanofluids. Renew. Sustain. Energy Rev. 2017, 77, 551–565. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.; Lou, W.; Hao, J. Thermal conductivity and rheological properties of graphite/oil nanofluids. Colloids Surf. A Physicochem. Eng. Asp. 2012, 414, 125–131. [Google Scholar] [CrossRef]
- Kumar, M.S.; Vasu, V.; Gopal, A.V. Thermal conductivity and rheological studies for Cu–Zn hybrid nanofluids with various basefluids. J. Taiwan Inst. Chem. Eng. 2016, 66, 321–327. [Google Scholar] [CrossRef]
- Esfe, M.H.; Esfandeh, S. A new generation of hybrid-nanofluid: Thermal properties enriched lubricant fluids with controlled viscosity amount. SN Appl. Sci. 2020, 2, 1–16. [Google Scholar]
- Nabil, M.; Azmi, W.; Hamid, K.A.; Mamat, R.; Hagos, F.Y. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture. Int. Commun. Heat Mass Transf. 2017, 86, 181–189. [Google Scholar] [CrossRef]
- Hu, X.; Yin, D.; Xie, J.; Chen, X.; Bai, C. Experimental study of viscosity characteristics of graphite/engine oil (5 W-40) nanofluids. Appl. Nanosci. 2020, 10, 1743–1756. [Google Scholar] [CrossRef]
- Doane, T.; Burda, C. Nanoparticle mediated non-covalent drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 607–621. [Google Scholar] [CrossRef] [Green Version]
- Sundar, L.S.; Irurueta, G.; Ramana, E.V.; Singh, M.K.; Sousa, A. Thermal conductivity and viscosity of hybrid nanfluids prepared with magnetic nanodiamond-cobalt oxide (ND-Co3O4) nanocomposite. Case Stud. Therm. Eng. 2016, 7, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Ali, N.; Teixeira, J.A.; Addali, A. A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. J. Nanomater. 2018, 2018, 1–33. [Google Scholar] [CrossRef]
- Shah, S.N.A.; Shahabuddin, S.; Sabri, M.F.M.; Salleh, M.F.M.; Ali, M.A.; Hayat, N.; Sidik, N.A.C.; Samykano, M.; Saidur, R. Experimental investigation on stability, thermal conductivity and rheological properties of rGO/ethylene glycol based nanofluids. Int. J. Heat Mass Transf. 2020, 150, 118981. [Google Scholar] [CrossRef]
- HYang, H.; Yao, G.; Wen, D. Experimental investigation on convective heat transfer of Shear-thinning fluids by elastic turbulence in a serpentine channel. Exp. Therm. Fluid Sci. 2019, 112, 109997. [Google Scholar]
- Mahbubul, I.M.; Saidur, R.; Amalina, M.A. Latest developments on the viscosity of nanofluids. Int. J. Heat Mass Transf. 2012, 55, 874–885. [Google Scholar] [CrossRef]
- Halelfadl, S.; Estellé, P.; Aladag, B.; Doner, N.; Maré, T. Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. Int. J. Therm. Sci. 2013, 71, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Kaggwa, A.; Carson, J.K. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: A review of recent literature. Int. Nano Lett. 2019, 9, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Afrand, M.; Najafabadi, K.N.; Akbari, M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl. Therm. Eng. 2016, 102, 45–54. [Google Scholar] [CrossRef]
- Colangelo, G.; Favale, E.; Miglietta, P.; Milanese, M.; de Risi, A. Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy 2016, 95, 124–136. [Google Scholar] [CrossRef]
- Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A. Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 2015, 66, 189–195. [Google Scholar] [CrossRef]
- Sundar, L.S.; Singh, M.K.; Sousa, A.C.M. Experimental thermal conductivity and viscosity of nanodiamond-based propylene glycol and water mixtures. Diam. Relat. Mater. 2016, 69, 49–60. [Google Scholar] [CrossRef]
- Soltani, O.; Akbari, M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 564–570. [Google Scholar] [CrossRef]
- Zareie, A.; Akbari, M. Hybrid nanoparticles effects on rheological behavior of water-EG coolant under different temperatures: An experimental study. J. Mol. Liq. 2017, 230, 408–414. [Google Scholar] [CrossRef]
- Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R.; Sharma, K.V. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int. J. Heat Mass Transf. 2018, 116, 1143–1152. [Google Scholar] [CrossRef]
- Esfe, M.H.; Hajmohammad, M.H. Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40:60) aqueous nanofluid using NSGA-II coupled with RSM. J. Mol. Liq. 2017, 238, 545–552. [Google Scholar] [CrossRef]
- Moldoveanu, G.M.; Minea, A.A.; Iacob, M.; Ibanescu, C.; Danu, M. Experimental study on viscosity of stabilized Al2O3, TiO2 nanofluids and their hybrid. Thermochim. Acta 2018, 659, 203–212. [Google Scholar] [CrossRef]
- Dalkılıç, A.S.; Açıkgöz, Ö.; Küçükyıldırım, B.O.; Eker, A.A.; Lüleci, B.; Jumpholkul, C.; Wongwises, S. Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. Int. Commun. Heat Mass Transf. 2018, 97, 30–38. [Google Scholar] [CrossRef]
- Akilu, S.; Baheta, A.T.; M. Said, M.A.; Minea, A.A.; Sharma, K. Properties of glycerol and ethylene glycol mixture based SiO2-CuO/C hybrid nanofluid for enhanced solar energy transport. Sol. Energy Mater. Sol. Cells 2018, 179, 118–128. [Google Scholar] [CrossRef]
P | L1 | L3 |
---|---|---|
Type of Nanomaterials | GO-TiO2-Ag | rGO-TiO2-Ag |
Concentration | 0.5 | 0.00005 |
Temperature | 25 | 50 |
Shear Rate | 1 | 1000 |
Run | Parameters | Response | ||||
---|---|---|---|---|---|---|
Type of Nanomaterials | Concentration | Temperature | Shear Rate | Viscosity | Shear Stress | |
Unit | - | wt% | °C | 1/s | mPa·s | Pa |
1 | GO-TiO2-Ag | 0.5 | 25 | 1 | 0.7 | 0.000738 |
2 | GO-TiO2-Ag | 0.5 | 25 | 1000 | 1 | 1.0352 |
3 | GO-TiO2-Ag | 0.00005 | 50 | 1 | 64.324 | 0.064335 |
4 | GO-TiO2-Ag | 0.00005 | 50 | 1000 | 0.86646 | 0.86665 |
5 | rGO-TiO2-Ag | 0.5 | 50 | 1 | 2.5824 | 0.002582 |
6 | rGO-TiO2-Ag | 0.5 | 50 | 1000 | 1.0062 | 1.0064 |
7 | rGO-TiO2-Ag | 0.00005 | 25 | 1 | 2.0453 | 0.002046 |
8 | rGO-TiO2-Ag | 0.00005 | 25 | 1000 | 0.84368 | 0.84386 |
Hybrid Nanoparticles/Base Fluid | Correlations | Temperature °C | Concentration vol% | Author |
---|---|---|---|---|
Ag–MgO/water | - | 0 < ∅ < 0.02 | [70] | |
ND–Fe3O4/water ND–Fe3O4/EG–water (20:80, 40:60 and 60:40) | T = 20: a = 1.444; b = 1.402; T = 30: a = 1.368; b = 1.472; T = 40: a = 1.277; b = 1.625; T = 50: a = 1.288; b = 1.771; T = 60: a = 1.338; b = 1.655 | 0 < ∅ < 0.002 | [71] | |
ND–Co3O4/water ND–Co3O4/EG ND–Co3O4/EG–water (20:80, 40:60 and 60:40) | 20 < T < 60 | 0.0005 < ∅ < 0.0015 | [61] | |
MgO–MWCNT/EG | 30 < T < 60 | 0 < ∅ < 1 | [72] | |
MgO–MWCNTs/water–EG | 25 < T < 60 | 0.025 < ∅ < 0.8 | [73] | |
Fe2O3–MWCNTs/EG | 25 < T < 50 | 0.8 < ∅ < 1.8 | [47] | |
TiO2–SiO2/water, EG | 30 < T < 70 | 0.5 < ∅ < 3 | [58] | |
TiO2–SiO2/water, EG | R is the fraction of particle in mixture | 30 < T < 80 | (1 vol%) 20:80, 40:60, 50:50, 60:40, and 80:20 | [74] |
Nanodiamond–Co3O4/Eg (40:60) | 20 < T < 60 | 0.5 < ∅ < 1.15 | [75] | |
Al2O3–TiO2/water | 25 < T < 25 | 1 < ∅ < 2 | [76] | |
SiO2–graphite/water | 15 < T < 60 | 0.1 < ∅ < 2 | [77] | |
(SiO2–CuO/C)/glycol–EG | 50 < T < 80 | 0.05 < ∅ < 1 | [78] |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 4 | 2007.5 | 501.9 | 1.02 | 0.513 |
Concentration | 1 | 492.8 | 492.8 | 1.00 | 0.390 |
Temperature | 1 | 515.0 | 515.0 | 1.05 | 0.381 |
Shear Rate | 1 | 543.4 | 543.4 | 1.11 | 0.370 |
Type of Nanomaterials | 1 | 456.2 | 456.2 | 0.93 | 0.406 |
Error | 3 | 1472.0 | 490.7 | - | - |
Total | 7 | 3479.5 | - | - | - |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 4 | 1.70599 | 0.42650 | 63.83 | 0.003 |
Concentration | 1 | 0.00898 | 0.00898 | 1.34 | 0.330 |
Temperature | 1 | 0.00042 | 0.00042 | 0.06 | 0.818 |
Shear Rate | 1 | 1.69502 | 1.69502 | 253.69 | 0.001 |
Type of Nanomaterials | 1 | 0.00157 | 0.00157 | 0.23 | 0.661 |
Error | 3 | 0.02004 | 0.00668 | - | - |
Total | 7 | 1.72603 | - | - | - |
Term | Coef | SE Coef | T-Value | p-Value | VIF |
---|---|---|---|---|---|
Constant | 8.8 | 28.2 | 0.31 | 0.777 | |
Concentration | −31.4 | 31.3 | −1.00 | 0.390 | 1.00 |
Temperature | 0.642 | 0.627 | 1.02 | 0.381 | 1.00 |
Shear Rate | −0.0165 | 0.0157 | −1.05 | 0.370 | 1.00 |
Type of Nanomaterials | |||||
GO-TiO2-Ag | 0.000000 | 0.000000 | - | - | - |
rGO-TiO2-Ag | −15.1 | 15.7 | −0.96 | 0.406 | 1.00 |
Term | Coef | SE Coef | T-Value | p-Value | VIF |
---|---|---|---|---|---|
Constant | −0.025 | 0.104 | −0.24 | 0.827 | |
Concentration | 0.134 | 0.116 | 1.16 | 0.330 | 1.00 |
Temperature | 0.00058 | 0.00231 | 0.25 | 0.818 | 1.00 |
Shear Rate | 0.000922 | 0.000058 | 15.93 | 0.001 | 1.00 |
Type of Nanomaterials | |||||
GO-TiO2-Ag | 0.000000 | 0.000000 | - | - | - |
rGO-TiO2-Ag | −0.0280 | 0.0578 | −0.48 | 0.661 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed Zayan, J.; Rasheed, A.K.; John, A.; Khalid, M.; Ismail, A.F.; Aabid, A.; Baig, M. Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method. Materials 2022, 15, 28. https://doi.org/10.3390/ma15010028
Mohammed Zayan J, Rasheed AK, John A, Khalid M, Ismail AF, Aabid A, Baig M. Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method. Materials. 2022; 15(1):28. https://doi.org/10.3390/ma15010028
Chicago/Turabian StyleMohammed Zayan, Jalal, Abdul Khaliq Rasheed, Akbar John, Mohammad Khalid, Ahmad Faris Ismail, Abdul Aabid, and Muneer Baig. 2022. "Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method" Materials 15, no. 1: 28. https://doi.org/10.3390/ma15010028
APA StyleMohammed Zayan, J., Rasheed, A. K., John, A., Khalid, M., Ismail, A. F., Aabid, A., & Baig, M. (2022). Investigation on Rheological Properties of Water-Based Novel Ternary Hybrid Nanofluids Using Experimental and Taguchi Method. Materials, 15(1), 28. https://doi.org/10.3390/ma15010028