Distrontium Cerate as a Radiopaque Component of Hydraulic Endodontic Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of S2Ce and Experimental Cements
2.2. Scanning Electron Microscopy (SEM) Observation
2.3. Setting Time Evaluation
2.4. Compressive Strength Evaluation
2.5. Relative Flowability
2.6. Ion Dissolution from Cured Cement
2.7. Radiopacity
2.8. Statistical Analysis
3. Results
3.1. XRD Analysis and Setting Time of the Synthesized S2Ce Powder
3.2. SEM Observation
3.3. Compressive Strength
3.4. Relative Flowability
3.5. Ion Dissolution from the Cured Cement
3.6. Radiopacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torabinejad, M.; Hong, C.U.; McDonald, F.; Pitt Ford, T.R. Physical and Chemical Properties of a New Root-End Filling Material. J. Endod. 1995, 21, 349–353. [Google Scholar] [CrossRef]
- Arens, D.E.; Torabinejad, M. Repair of Furcal Perforations with Mineral Trioxide Aggregate: Two Case Reports. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1996, 82, 84–88. [Google Scholar] [CrossRef]
- Faraco, I.M.; Holland, R. Response of the Pulp of Dogs to Capping with Mineral Trioxide Aggregate or a Calcium Hydroxide Cement. Dent. Traumatol. 2001, 17, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Kuratate, M.; Yoshiba, K.; Shigetani, Y.; Yoshiba, N.; Ohshima, H.; Okiji, T. Immunohistochemical Analysis of Nestin, Osteopontin, and Proliferating Cells in the Reparative Process of Exposed Dental Pulp Capped with Mineral Trioxide Aggregate. J. Endod. 2008, 34, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.G.; Taddei, P.; Tinti, A.; Prati, C. Apatite-Forming Ability (Bioactivity) of ProRoot MTA. Int. Endod. J. 2010, 43, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Chivian, N. Clinical Applications of Mineral Trioxide Aggregate. J. Endod. 1999, 25, 197–205. [Google Scholar] [CrossRef]
- Santos, J.M.; Marques, J.A.; Diogo, P.; Messias, A.; Sousa, V.; Sequeira, D.; Palma, P.J. Influence of Preoperative Pulp Inflammation in the Outcome of Full Pulpotomy Using a Dog Model. J. Endod. 2021, 47, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Formosa, L.M.; Mallia, B.; Camilleri, J. The Effect of Curing Conditions on the Physical Properties of Tricalcium Silicate Cement for Use as a Dental Biomaterial. Int. Endod. J. 2012, 45, 326–336. [Google Scholar] [CrossRef]
- Camilleri, J. The Chemical Composition of Mineral Trioxide Aggregate. J. Conserv. Dent. 2008, 11, 141–143. [Google Scholar] [CrossRef]
- Coomaraswamy, K.S.; Lumley, P.J.; Hofmann, M.P. Effect of Bismuth Oxide Radioopacifier Content on the Material Properties of an Endodontic Portland Cement–Based (MTA-Like) System. J. Endod. 2007, 33, 295–298. [Google Scholar] [CrossRef]
- Kang, S.H.; Shin, Y.S.; Lee, H.S.; Kim, S.O.; Shin, Y.; Jung, I.Y.; Song, J.S. Color Changes of Teeth After Treatment With Various Mineral Trioxide Aggregate–Based Materials: An Ex Vivo Study. J. Endod. 2015, 41, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.J.; Marques, J.A.; Santos, J.; Falacho, R.I.; Sequeira, D.; Diogo, P.; Caramelo, F.; Ramos, J.C.; Santos, J.M. Tooth Discoloration after Regenerative Endodontic Procedures with Calcium Silicate-Based Cements-An Ex Vivo Study. Appl. Sci. 2020, 10, 5793. [Google Scholar] [CrossRef]
- Camilleri, J.; Borg, J.; Damidot, D.; Salvadori, E.; Pilecki, P.; Zaslansky, P.; Darvell, B.W. Colour and Chemical Stability of Bismuth Oxide in Dental Materials with Solutions Used in Routine Clinical Practice. PLoS ONE 2020, 15, e0240634. [Google Scholar] [CrossRef]
- Adel, S.; Wada, T.; Kawashima, N.; Abdou, A.; Watanabe, H.; Kurabayashi, T.; Okiji, T.; Uo, M. Preparation and Properties of Tristrontium Aluminate as an Alternative Component of Mineral Trioxide Aggregate (MTA) Cement. Dent. Mater. J. 2021, 40, 184–190. [Google Scholar] [CrossRef]
- Uo, M.; Wada, T.; Asakura, K. Structural Analysis of Strontium in Human Teeth Treated with Surface Pre-Reacted Glass-Ionomer Filler Eluate by Using Extended X-Ray Absorption Fine Structure Analysis. Dent. Mater. J. 2017, 36, 214–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, A.; Wada, T.; Mori, Y.; Uo, M. Time Dependence of Multi-Ion Absorption into Human Enamel from Surface Prereacted Glass-Ionomer (S-PRG) Filler Eluate. Dent. Mater. J. 2019, 38, 707–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dedhiya, M.G.; Young, F.; Higuchi, W.I. Mechanism for the Retardation of the Acid Dissolution Rate of Hydroxyapatite by Strontium. J. Dent. Res. 1973, 52, 1097–1109. [Google Scholar] [CrossRef]
- Featherstone, J.D.B.; Shields, C.P.; Khademazad, B.; Oldershaw, M.D. Acid Reactivity of Carbonated Apatites with Strontium and Fluoride Substitutions. J. Dent. Res. 1983, 62, 1049–1053. [Google Scholar] [CrossRef]
- Spets-Happonen, S.; Luoma, H.; Seppä, L.; Räisänen, J. The Effect of Different Strontium Concentrations on the Efficacy of Chlorhexidine-Fluoride-Strontium Gel in Preventing Enamel Softening in Vitro. Arch. Oral Biol. 1993, 38, 107–112. [Google Scholar] [CrossRef]
- Thuy, T.T.; Nakagaki, H.; Kato, K.; Hung, P.A.; Inukai, J.; Tsuboi, S.; Nakagaki, H.; Hirose, M.N.; Igarashi, S.; Robinson, C. Effect of Strontium in Combination with Fluoride on Enamel Remineralisation in Vitro. Arch. Oral Biol. 2008, 53, 1017–1022. [Google Scholar] [CrossRef]
- Shahid, S.; Hassan, U.; Billington, R.W.; Hill, R.G.; Anderson, P. Glass Ionomer Cements: Effect of Strontium Substitution on Esthetics, Radiopacity and Fluoride Release. Dent. Mater. 2014, 30, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Suriyamurthy, N.; Panigrahi, B.S.; Venkatraman, B.; Natarajan, V. Studies on Optical Properties of Blue Emitting Sr2CeO4 Phosphor Prepared Through Combustion Synthesis. J. Opt. 2012, 41, 48–53. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sahu, M.; Krishnan, K.; Saxena, M.K.; Natarajan, V.; Godbole, S.V. Bluish White Emitting Sr2CeO4 and Red Emitting Sr2CeO4:Eu3+ Nanoparticles: Optimization of Synthesis Parameters, Characterization, Energy Transfer and Photoluminescence. J. Mater. Chem. C 2013, 1, 7054–7063. [Google Scholar] [CrossRef]
- Zhou, G.; Gu, G.; Li, Y.; Zhang, Q.; Wang, W.; Wang, S.; Zhang, J. Effects of Cerium Oxide Nanoparticles on the Proliferation, Differentiation, and Mineralization Function of Primary Osteoblasts In Vitro. Biol. Trace Elem. Res. 2013, 153, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Blough, E.; Dai, X.; Olajide, O.; Driscoll, H.; Leidy, J.W.; July, M.; Triest, W.E.; Wu, M. Protective Effects of Cerium Oxide Nanoparticles on MC3T3-E1 Osteoblastic Cells Exposed to X-Ray Irradiation. Cell. Physiol. Biochem. 2016, 38, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Wada, T.; Uo, M.; Okiji, T. Influence of Bentonite Addition on the Handling and Physical Properties of Tricalcium Silicate Cement. Asian. Pac. J. Dent. 2018, 18, 37–44. [Google Scholar]
- Choi, Y.; Park, S.J.; Lee, S.H.; Hwang, Y.C.; Yu, M.K.; Min, K.S. Biological Effects and Washout Resistance of a Newly Developed Fast-Setting Pozzolan Cement. J. Endod. 2013, 39, 467–472. [Google Scholar] [CrossRef]
- Hwang, Y.C.; Kim, D.H.; Hwang, I.N.; Song, S.J.; Park, Y.J.; Koh, J.T.; Son, H.H.; Oh, W.M. Chemical Constitution, Physical Properties, and Biocompatibility of Experimentally Manufactured Portland Cement. J. Endod. 2011, 37, 58–62. [Google Scholar] [CrossRef]
- Islam, I.; Chng, H.K.; Yap, A.U. Comparison of the Physical and Mechanical Properties of MTA and Portland Cement. J. Endod. 2006, 32, 193–197. [Google Scholar] [CrossRef]
- Weast, R.C.; Astle, M.J.; Beyer, W.H. CRC Handbook of Chemistry and Physics, 69th ed.; CRC Press Inc.: Boca Raton, FL, USA, 1989; pp. B68–B146, E189–B194. [Google Scholar]
- Adel, S.; Hashimoto, K.; Kawashima, N.; Wada, T.; Uo, M.; Okiji, T. Biocompatibility and Pro-mineralization Effect of Tristrontium Aluminate Cement for Endodontic Use. J. Dent. Sci. 2022; in press. [Google Scholar]
- Ozaki, Y.; Watanabe, H.; Kurabayashi, T. Effective Dose Estimation in Cone-Beam Computed Tomography for Dental Use by Monte-Carlo Simulation Optimizing Calculation Numbers Using a Step-and-Shoot Method. Dentomaxillofac. Radiol. 2021, 50, 20210084. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.J.; Marques, J.A.; Falacho, R.I.; Vinagre, A.; Santos, J.M.; Ramos, J.C. Does Delayed Restoration Improve Shear Bond Strength of Different Restorative Protocols to Calcium Silicate-Based Cements? Materials 2018, 11, 2216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | 1 d | 3 d |
---|---|---|
Sr | 5.27 ± 0.15 mg/mL (195 ± 5.5 mM) | 5.68 ± 0.23 mg/mL (211 ± 8.8 mM) |
Ce | not detected | not detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumrongvute, K.; Adel, S.; Wada, T.; Kawashima, N.; Piyachon, C.; Watanabe, H.; Kurabayashi, T.; Okiji, T.; Uo, M. Distrontium Cerate as a Radiopaque Component of Hydraulic Endodontic Cement. Materials 2022, 15, 284. https://doi.org/10.3390/ma15010284
Dumrongvute K, Adel S, Wada T, Kawashima N, Piyachon C, Watanabe H, Kurabayashi T, Okiji T, Uo M. Distrontium Cerate as a Radiopaque Component of Hydraulic Endodontic Cement. Materials. 2022; 15(1):284. https://doi.org/10.3390/ma15010284
Chicago/Turabian StyleDumrongvute, Kunlanun, Sherif Adel, Takahiro Wada, Nobuyuki Kawashima, Chinalai Piyachon, Hiroshi Watanabe, Tohru Kurabayashi, Takashi Okiji, and Motohiro Uo. 2022. "Distrontium Cerate as a Radiopaque Component of Hydraulic Endodontic Cement" Materials 15, no. 1: 284. https://doi.org/10.3390/ma15010284
APA StyleDumrongvute, K., Adel, S., Wada, T., Kawashima, N., Piyachon, C., Watanabe, H., Kurabayashi, T., Okiji, T., & Uo, M. (2022). Distrontium Cerate as a Radiopaque Component of Hydraulic Endodontic Cement. Materials, 15(1), 284. https://doi.org/10.3390/ma15010284