Tribological Properties of Solid Solution Strengthened Laser Cladded NiCrBSi/WC-12Co Metal Matrix Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate and Coating Materials
2.2. Laser Cladding Process
2.3. Surface Roughness
2.4. Microstructural Analysis with EDS/EBSD and XRD
2.5. Hardness and Micro-Hardness Testing
2.6. Tribological Tests
3. Results and Discussion
3.1. Surface Roughness after Laser Cladding
3.2. Microstructures after Laser Cladding
3.3. Through-Depth Hardness Measurements
3.4. Wear Properties
SEM Wear Track Analysis
4. Conclusions
- High-energy laser cladding of NiCrBSi with WC-12Co enabled the cobalt and tungsten to be dissolved and integrated into the matrix to form a multi-matrix NiCoCrW The addition of 30, 40, 50 wt.% WC-Co and resulting alloyed nickel-based matrix with Co and W resulted in 50,78 and 85% higher hardness values, respectively. In the NiCrBSi with 30, 40 and 50 wt.% WC-12Co, EBSD studies confirmed the presence of WC, Cr7C3, Cr23C6, γ-Ni and Ni3B. Occasionally, larger WC particles were dissolved or thermally cracked during heating and cooling. Alloying of the Ni-matrix with Co and W reduced the plastic deformation and differences in the hardnesses and prevented severe material removal by adhesive wear, which was present in NiCrBSi and Al2O3 pair.
- The abrasive wear mode was observed on the NiCrBSi coatings with 30, 40 and 50 wt.% WC-12Co. Compared to that for the original NiCrBSi laser cladded coating, the wear rates dropped by approximately 4.7 times for the 30 wt.% WC-12Co, 5.9-times for the 40 wt.% WC-12Co and a 13.5-times for the 50 wt.% WC-12Co. Thus, the wear rate decreased with increasing content of WC-12Co. In the NiCrBSi with 30 wt.% of WC-Co, wear fatigue cracks were found in the matrix between the WC-particles, and there was a higher amount of detached particles. In the NiCrBSi with 40 and 50 wt.% WC-12Co, wear fatigue cracks were not detected.
- The microstructure of the WC-12Co consisted of a Co-rich (β) phase and two carbide types: large polygonal WC carbides with sharp edges and a network of an M6C (Co3W3C) phase, WC and W2C. The WC-12 Co coating was the most difficult to laser clad because it was brittle and had the highest wear resistance among the tested combinations. Compared to that for the original NiCrBSi laser cladded coating, the wear rates of the WC-12Co coatings were approximately 23.1-times lower.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salimi, A.; Sanjabi, S. Infiltration brazed core-shell WC@NiP/NiCrBSi composite cladding. Surf. Coat. Technol. 2018, 352, 59–73. [Google Scholar] [CrossRef]
- Zhou, S.; Lei, J.; Dai, X.; Guo, J.; Gu, Z.; Pan, H. A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding. Int. J. Refract. Met. Hard Mater. 2016, 60, 17–27. [Google Scholar] [CrossRef]
- Simunovic, K.; Slokar, L.; Havrlisan, S. SEM/EDS investigation of one-step flame sprayed and fused Ni-based self-fluxing alloy coatings on steel substrates. Philos. Mag. 2017, 97, 248–268. [Google Scholar] [CrossRef]
- Deschuyteneer, D.; Petit, F.; Gonon, M.; Cambier, F. Processing and characterization of laser clad NiCrBSi/WC composite coatings—Influence of microstructure on hardness and wear. Surf. Coat. Technol. 2015, 283, 162–171. [Google Scholar] [CrossRef]
- Brückner, F.; Nowotny, S.; Riede, M.; Kubisch, F.; Leyens, C.; Beyer, E. Surface Functionalization by High-precision Laser Cladding. Laser Tech. J. 2013, 10, 29–31. [Google Scholar] [CrossRef]
- Brueckner, F.; Riede, M.; Marquardt, F.; Willner, R.; Seidel, A.; Thieme, S.; Leyens, C.; Beyer, E. Process characteristics in high-precision laser metal deposition using wire and powder. J. Laser Appl. 2017, 29, 022301. [Google Scholar] [CrossRef]
- Shishkovsky, I.; Kakovkina, N.; Sherbakof, V. Mechanical properties of NiCrBSi self-fluxing alloy after LPBF with additional heating. Procedia CIRP 2020, 94, 217–221. [Google Scholar] [CrossRef]
- Simunovic, K.; Saric, T.; Simunovic, G. Different Approaches to the Investigation and Testing of the Ni-Based Self-Fluxing Alloy Coatings—A Review. Part 1: General Facts, Wear and Corrosion Investigations. Tribol. Trans. 2014, 57, 955–979. [Google Scholar] [CrossRef]
- Sbrizher, A.G. Structure and properties of coatings made of self-fluxing alloys. Met. Sci. Heat Treat. 1988, 30, 296–299. [Google Scholar] [CrossRef]
- Bergant, Z.; Trdan, U.; Grum, J. Effect of high-temperature furnace treatment on the microstructure and corrosion behavior of NiCrBSi flame-sprayed coatings. Corros. Sci. 2014, 88, 372–386. [Google Scholar] [CrossRef]
- ASM International Handbook Committees. ASM Handbook; ASM International: Novelty, OH, USA, 1992; Volume 3. [Google Scholar]
- Chen, J.; Dong, Y.; Wan, L.; Yang, Y.; Chu, Z.; Zhang, J.; He, J.; Li, D. Effect of induction remelting on the microstructure and properties of in situ TiN-reinforced NiCrBSi composite coatings. Surf. Coat. Technol. 2018, 340, 159–166. [Google Scholar] [CrossRef]
- Deschuyteneer, D.; Petit, F.; Gonon, M.; Cambier, F. Influence of large particle size—Up to 1.2 mm—and morphology on wear resistance in NiCrBSi/WC laser cladded composite coatings. Surf. Coat. Technol. 2017, 311, 365–373. [Google Scholar] [CrossRef]
- Buytoz, S.; Ulutan, M.; Islak, S.; Kurt, B.; Çelik, O.N. Microstructural and Wear Characteristics of High Velocity Oxygen Fuel (HVOF) Sprayed NiCrBSi–SiC Composite Coating on SAE 1030 Steel. Arab. J. Sci. Eng. 2013, 38, 1481–1491. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Lei, Y.; Niu, W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser. Surf. Coat. Technol. 2009, 203, 1395–1399. [Google Scholar] [CrossRef]
- Shabana, S.; Sarcar, M.; Suman, K.N.S.; Kamaluddin, S. Tribological and Corrosion behavior of HVOF Sprayed WC-Co, NiCrBSi and Cr3C2-NiCr Coatings and analysis using Design of Experiments. Mater. Today Proc. 2015, 2, 2654–2665. [Google Scholar] [CrossRef]
- Cai, B.; Tan, Y.-F.; Tan, H.; Jing, Q.-F.; Zhang, Z.-W. Tribological behavior and mechanism of NiCrBSi–Y2O3 composite coatings. Trans. Nonferrous Met. Soc. China 2013, 23, 2002–2010. [Google Scholar] [CrossRef]
- Hemmati, I.; Rao, J.; Ocelík, V.; De Hosson, J. Electron Microscopy Characterization of Ni-Cr-B-Si-C Laser Deposited Coatings. Microsc. Microanal. 2013, 19, 120–131. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Xu, T.; Wang, H.; Sang, P.; Lu, S.; Wang, Z.-X.; Chen, S.; Zhang, L.-C. Phase interaction induced texture in a plasma sprayed-remelted NiCrBSi coating during solidification: An electron backscatter diffraction study. Surf. Coat. Technol. 2019, 358, 467–480. [Google Scholar] [CrossRef]
- Sheppard, P.; Koiprasert, H. Effect of W dissolution in NiCrBSi–WC and NiBSi–WC arc sprayed coatings on wear behaviors. Wear 2014, 317, 194–200. [Google Scholar] [CrossRef]
- Zhou, S.; Dai, X. Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings. Appl. Surf. Sci. 2010, 256, 4708–4714. [Google Scholar] [CrossRef]
- Bergant, Z.; Grum, J. Quality Improvement of Flame Sprayed, Heat Treated, and Remelted NiCrBSi Coatings. J. Therm. Spray Technol. 2009, 18, 380–391. [Google Scholar] [CrossRef]
- Fernandez, R.; García, A.; Cuetos-Megido, J.M.; González, R.; Noriega, A.; Cadenas, M. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC. Wear 2015, 324–325, 80–89. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; Barakat, W.S.; Mohamed, A.Y.A.; Alsaleh, N.A.; Elkady, O.A. The Development of WC-Based Composite Tools for Friction Stir Welding of High-Softening-Temperature Materials. Metals 2021, 11, 285. [Google Scholar] [CrossRef]
- Lin, N.; Jiang, Y.; Zhang, D.; Wu, C.; He, Y.; Xiao, D. Effect of Cu, Ni on the property and microstructure of ultrafine WC-10Co alloys by sinter–hipping. Int. J. Refract. Met. Hard Mater. 2011, 29, 509–515. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, J.; Chen, J.; Zhao, J.; Yu, Y.; Zhou, H. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings. Wear 2011, 270, 492–498. [Google Scholar] [CrossRef]
- Yao, S.H. Tribological behaviour of NiCrBSi–WC(Co) coatings. Mater. Res. Innov. 2014, 18, S2-332–S2-337. [Google Scholar] [CrossRef]
- Vencl, A.; Mrdak, M.; Hvizdos, P. Tribological Properties of WC-Co/NiCrBSi and Mo/NiCrBSi Plasma Spray Coatings under Boundary Lubrication Conditions. Tribol. Ind. 2017, 39, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Bolelli, G.; Börner, T.; Milanti, A.; Lusvarghi, L.; Laurila, J.; Koivuluoto, H.; Niemi, K.; Vuoristo, P. Tribological behavior of HVOF- and HVAF-sprayed composite coatings based on Fe-Alloy+WC–12% Co. Surf. Coat. Technol. 2014, 248, 104–112. [Google Scholar] [CrossRef]
- Armstrong, R.W. The Hardness and Strength Properties of WC-Co Composites. Materials 2011, 4, 1287–1308. [Google Scholar] [CrossRef]
- Valsecchi, B.; Previtali, B.; Vedani, M.; Vimercati, G. Fiber Laser Cladding with High Content of WC-Co Based Powder. Int. J. Mater. Form. 2010, 3, 1127–1130. [Google Scholar] [CrossRef]
- Cadenas, M.; Vijande, R.; Montes, H.; Sierra, J. Wear behaviour of laser cladded and plasma sprayed WC-Co coatings. Wear 1997, 212, 244–253. [Google Scholar] [CrossRef]
- Mühlbauer, G.; Kremser, G.; Bock, A.; Weidow, J.; Schubert, W.-D. Transition of W 2 C to WC during carburization of tungsten metal powder. Int. J. Refract. Met. Hard Mater. 2018, 72, 141–148. [Google Scholar] [CrossRef]
- Niranatlumpong, P.; Koiprasert, H. Phase transformation of NiCrBSi–WC and NiBSi–WC arc sprayed coatings. Surf. Coat. Technol. 2011, 206, 440–445. [Google Scholar] [CrossRef]
- Bergant, Z.; Grum, J. POROSITY EVALUATION OF FLAME-SPRAYED AND HEAT-TREATED NICKEL-BASED COATINGS USING IMAGE ANALYSIS. Image Anal. Ster. 2011, 30, 53–62. [Google Scholar] [CrossRef]
- Paul, C.; Alemohammad, H.; Toyserkani, E.; Khajepour, A.; Corbin, S. Cladding of WC–12 Co on low carbon steel using a pulsed Nd:YAG laser. Mater. Sci. Eng. A 2007, 464, 170–176. [Google Scholar] [CrossRef]
- Toyserkani, E.; Khajepour, A.; Corbin, S.F. Laser Cladding, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Gregson, V.G. Laser Heat Treatment. In Materials Processing: Theory and Practices; Bass, M., Ed.; Elsevier: Palo Alto, CA, USA, 1983; Volume 3, pp. 201–233. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, B.; Zeng, X.; Hu, X.; Cui, K. Critical state of laser cladding with powder auto-feeding. Surf. Coat. Technol. 1996, 79, 200–204. [Google Scholar] [CrossRef]
- Schneider, M. Laser Cladding with Powder. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, March 1998. [Google Scholar]
- Indhu, R.; Vivek, V.; Sarathkumar, L.; Bharatish, A.; Soundarapandian, S. Overview of Laser Absorptivity Measurement Techniques for Material Processing. Lasers Manuf. Mater. Process. 2018, 5, 458–481. [Google Scholar] [CrossRef]
- Zanzarin, S. Laser Cladding with Metallic Powders. Ph.D. Thesis, University of Trento, Trento, Italy, November 2015. [Google Scholar]
- Schneider, M.; Berthe, L.; Fabbro, R.; Muller, M. Measurement of laser absorptivity for operating parameters characteristic of laser drilling regime. J. Phys. D. Appl. Phys. 2008, 41. [Google Scholar] [CrossRef]
- Kılıçay, K.; Buytoz, S.; Ulutan, M. Microstructural and tribological properties of induction cladded NiCrBSi /WC composite coatings. Surf. Coat. Technol. 2020, 397, 125974. [Google Scholar] [CrossRef]
- Aliofkhazraei, M.; Aliofkhazraei, M.; Walsh, F.C. A review of electrodeposited Ni-Co alloy and composite coatings: Microstructure, properties and applications. Surf. Coat. Technol. 2019, 372, 463–498. [Google Scholar] [CrossRef]
- Geitner, F.K.; Bloch, H.P. Metallurgical Failure Analysis. In Machinery Failure Analysis and Troubleshooting, 4th ed.; Geitner, F.K., Bloch, H.P., Eds.; Butterworth-Heinemann: Oxford, UK, 2012; pp. 11–85. [Google Scholar]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Suh, N.P. An overview of the delamination theory of wear. Wear 1977, 44, 1–16. [Google Scholar] [CrossRef]
Code | Comercial Name | Elements (wt.%) | |||
---|---|---|---|---|---|
Ni | Cr | B | Si | ||
NiCrBSi | Eutalloy RW 12495 | 78 | 13 | 2.08 | 4 |
WC | Co | ||||
WC-12Co | SM 5810 | 88 | 12 |
Code | Powder | NiCrBSi (wt.%) | WC-12Co (wt.%) | Particle Size (μm) | Density (g/cm3) |
---|---|---|---|---|---|
NiCrBSi | Eutalloy 12,495 | 100 | - | 72 | 8.2 |
+30 wt.% WC-12Co | Exp 1 | 70 | 30 | 63–72 | 10.2 |
+40 wt.% WC-12Co | Exp 2 | 60 | 40 | 63–72 | 10.8 |
+50 wt.% WC-12Co | Exp 3 | 50 | 50 | 63–72 | 11.5 |
WC-12 Co | SM 5810 | - | 100 | −63 + 5 | 14.8 |
Laser Power P (W) | Scanning Speed S (mm/s) | Powder Feed | Laser Diameter d (mm) | Overlap (%) | Energy Density E (J/mm2) | Powder Density G (g/dm2) |
---|---|---|---|---|---|---|
2000 | 8 | 10 | 2.67 | 40 | 94 | 78 |
Coating Material | Spectrum POSITION | Name | Hardness HV0.01 | Chemical Composition (wt.%) | |||||
---|---|---|---|---|---|---|---|---|---|
Ni | Cr | Si | W | Co | O | ||||
NiCrBSi | 1 | γ-Ni | 430 | 80.7 | 12.2 | 7.1 | 0 | 0 | 0 |
2 | Eutectic | 750 | 78.1 | 12.6 | 6.7 | 0 | 0 | 2.6 | |
3 | Cr-rich | 763 | 76.5 | 18.1 | 3.9 | 0 | 0 | 1.5 | |
NiCrBSi + 30 wt.% WC-12Co | 1 | NiCrCoW | 601 | 77.9 | 8.1 | 4.4 | 6.2 | 3.4 | 0 |
2 | WC | 2527 | 1.1 | 0 | 0 | 98.0 | 0 | 0.9 | |
3 | Crushed WC | 1620 | 18.2 | 2.7 | 0 | 77.1 | 1.1 | 0.9 | |
4 | Oxides | 1467 | 31.5 | 5.4 | 0 | 28 | 3.1 | 32 | |
NiCrBSi + 40 wt.% WC-12Co | 1 | NiCrCoW | 714 | 74.6 | 8.6 | 3.5 | 7.1 | 6.2 | 0 |
2 | WC | 2463 | 2.1 | 0 | 0 | 97.9 | 0 | 0 | |
3 | Crushed WC | 2089 | 10.9 | 1.4 | 0 | 85.7 | 0.9 | 1.1 | |
4 | Oxides #1 | 1125 | 31.4 | 2.8 | 1.6 | 6.9 | 3.8 | 53.5 | |
5 | Oxides #2 | * | 36.0 | 3.6 | 1.2 | 7.3 | 5.2 | 46.7 | |
6 | Oxides #3 | * | 15.1 | 7.2 | 0 | 63.6 | 2.1 | 12 | |
NiCrBSi + 50 wt.% WC-12Co | 1 | NiCrCoW | 747 | 71.1 | 7.8 | 0 | 7.90 | 13.2 | 0 |
2 | WC | 2533 | 0 | 0 | 0 | 100 | 0 | 0 | |
3 | Oxides | 1159 | 22.3 | 5.3 | 0 | 48.5 | 6.4 | 17.5 | |
4 | Oxides | * | 35.8 | 4.7 | 0 | 41.1 | 0 | 18.4 | |
WC-12Co | 1 | Co-matrix | 1467 | 3.2 | 1.4 | 0 | 31.4 | 63.4 | 0 |
2 | WC | 2281 | 0 | 0 | 0 | 100 | 0 | 0 | |
3 | Dendrites | * | 0 | 0 | 0 | 88 | 12 | 0 | |
4 | M6C carbide network | * | 0 | 0 | 0 | 56 | 44 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergant, Z.; Batič, B.Š.; Felde, I.; Šturm, R.; Sedlaček, M. Tribological Properties of Solid Solution Strengthened Laser Cladded NiCrBSi/WC-12Co Metal Matrix Composite Coatings. Materials 2022, 15, 342. https://doi.org/10.3390/ma15010342
Bergant Z, Batič BŠ, Felde I, Šturm R, Sedlaček M. Tribological Properties of Solid Solution Strengthened Laser Cladded NiCrBSi/WC-12Co Metal Matrix Composite Coatings. Materials. 2022; 15(1):342. https://doi.org/10.3390/ma15010342
Chicago/Turabian StyleBergant, Zoran, Barbara Šetina Batič, Imre Felde, Roman Šturm, and Marko Sedlaček. 2022. "Tribological Properties of Solid Solution Strengthened Laser Cladded NiCrBSi/WC-12Co Metal Matrix Composite Coatings" Materials 15, no. 1: 342. https://doi.org/10.3390/ma15010342
APA StyleBergant, Z., Batič, B. Š., Felde, I., Šturm, R., & Sedlaček, M. (2022). Tribological Properties of Solid Solution Strengthened Laser Cladded NiCrBSi/WC-12Co Metal Matrix Composite Coatings. Materials, 15(1), 342. https://doi.org/10.3390/ma15010342