Effect of Corrosive Media on the Chemical and Mechanical Resistance of IPS e.max® CAD Based Li2Si2O5 Glass-Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Corrosion Tests
2.3. Analysis of Corrosion Solutions
2.4. Mechanical Properties
2.5. SEM Analysis
2.6. Attenuated Total Reflectance Infrared Spectroscopy
3. Results
3.1. Characterization of the Prepared Materials
3.2. Corrosion Process in an Acidic Environment
3.3. Corrosion Process in Alkaline Environment
3.4. Toxicity and Chemical Solubility of the Materials
4. Conclusions
- Different heat treatments of IPS e.max® CAD resulted in materials with different ratios of crystalline and amorphous phases. The higher crystallization temperature led to higher crystalline content.
- The pH of the corrosion solution affected the ion leaching process significantly. Li and P were primarily leached in the acidic environment. In the alkaline NaOH solution with the pH = 10, primarily Li, Si and P elements were leached from the materials.
- After quasi-dynamic corrosion for 96 h at 37 °C in 4% acetic acid, the highest ion elution was shown in the material heat treated at 820 °C. The material heat-treated at the maximum temperature of 850 °C was more resistant to quasi-dynamic corrosion in an acidic medium.
- This study confirmed that exposure to an alkaline environment results in a breakdown of the silica network as compared with exposure to an acidic solution, which resulted in selective ionic leaching of the amorphous phase (mostly Li elements).
- The results of this in vitro studies on chemical corrosion suggest that acidic environments adversely affect the wear resistance of tested dental materials. Corrosion in an acidic environment weakens LS2-GCs, IPS e.max® CAD.
- The Li elution was not toxicologically significant.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Höland, W.; Beall, H.G. Principles of designing glass-ceramic formation. In Glass-Ceramic Technology, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 39–72. [Google Scholar]
- Huang, S.; Huang, Z.; Gao, W.; Cao, P. Trace phase formation, crystalization kinetics and crystallographic evolution of a lithium disilicate glass probed by synchrotron XRD technique. Sci. Rep. 2015, 5, 1–5. [Google Scholar]
- Rampf, M.; Dittmer, M.; Ritzberger, C.; Schweiger, M.; Höland, W. Properties and crystallization phenomena in Li2Si2O5–Ca5(PO4)3F and Li2Si2O5–Sr5(PO4)3F glass–ceramics via twofold internal crystallization. Front. Bioeng. Biotechnol. 2015, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Anusavice, K.J.; Zhang, N.Z. Chemical durability of Dicor anf lithia-based glass-ceramics. Dent. Mater. 1997, 13, 13–19. [Google Scholar] [CrossRef]
- Jakovac, M.; Živko-Babić, J.; Ćurković, L.; Aurer, A. Measurement of ion elution from dental ceramics. J. Eur. Ceram. Soc. 2006, 26, 1695–1700. [Google Scholar] [CrossRef]
- Swain, M.V. Impact of oral fluids on dental ceramics: What is the clinical relevance? Dent. Mater. 2014, 30, 33–42. [Google Scholar] [CrossRef]
- Esquivel-Upshaw, J.F.; Dieng, F.Y.; Clark, A.E.; Neal, D.; Anusavice, K.J. Surface degradation of dental ceramics as a function of environmental pH. J. Dent. Res. 2013, 92, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Guo, J.W.; Wang, X.S.; Zhang, S.F.; He, L. Effect of crystal size on the mechanical properties of a lithium disilicate glass-ceramic. Mater. Sci. Eng. A 2016, 669, 332–339. [Google Scholar] [CrossRef]
- Quinn, J.B.; Sundar, V.; Lloyd, I.K. Influence of microstructure and chemistry on the fracture tougness of dental ceramics. Dent. Mater. 2003, 19, 603–611. [Google Scholar] [CrossRef]
- Milleding, P.; Haraldsson, C.; Karlsson, S. Ion leaching from dental ceramics during static in vitro corrosion testing. J. Biomed. Mater. Res. 2002, 61, 541–550. [Google Scholar] [CrossRef]
- Ohashi, K.; Kameyama, Y.; Wada, Y.; Midono, T.; Miyake, K.; Kunzelmann, K.; Nihei, T. Evaluation and comparison of the characteristics of three pressable lithium disilicate glass ceramic materilas. Int. J. Dev. Res. 2017, 7, 16711–16716. [Google Scholar]
- Kukiattrakoon, B.; Hengtrakool, C.; Kedjarune Leggat, U. Effect of Acidic Agents on Surface Rougness of Dental Ceramics. Dent. Res. J. 2011, 8, 6–15. [Google Scholar]
- ISO 6872; International Standards for Dental Ceramics. International Organization for Standardization: Geneva, Switzerland, 1995.
- Zheng, J.; Zhou, Z.R. Friction and wear behavior of human teeth under various wear conditions. Tribol. Int. 2007, 40, 278–284. [Google Scholar] [CrossRef]
- Ivoclar Vivadent. Scientific Documentation IPS e.max CAD. Available online: https://www.ivoclar.com/en_li/products/digital-processes/ips-e.max-cad (accessed on 14 November 2021).
- Holand, W.; Apel, E.; van’t Hoen, C.; Rheinberger, V. Studies of cystal phase formations in high-strenght lithium disilicate glass-ceramics. J. Non-Cryst. Solids 2006, 1, 4041–4050. [Google Scholar] [CrossRef]
- Yuan, K.; Wang, F.; Gao, J.; Sun, X.; Deng, Z.; Wang, H.; Chen, J. Effect of sintering time on the microstructure, flexural strenght and translucency of lithium disilicate galss-ceramics. J. Non-Cryst. Solids 2013, 1, 7–13. [Google Scholar] [CrossRef]
- Garai, M.; Karmakar, B. Zr4+-controlled nucleation and microstructure in Si-Mg-Al-K-B-F glass ceramic sealant (solid oxide fuel cell). Mater. Today Energy 2020, 18, 100535. [Google Scholar] [CrossRef]
- Garai, M.; Reka, A.A.; Karmakar, B.; Molla, A.R. Microstructure–mechanical properties of Ag0 /Au0 doped K–Mg–Al–Si–O–F glass-ceramics. R. Soc. Chem. Adv. 2021, 11, 11415. [Google Scholar] [CrossRef]
- Anusavice, K.J. Degradability of dental ceramics. Adv. Dent. Res. 1992, 6, 82–89. [Google Scholar] [CrossRef]
- Macon, A.L.B.; Jacquemin, M.; Page, S.J.; Li, S.; Bertazzo, S.; Stevens, M.M.; Hanna, J.V.; Jones, J.R. Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. J. Sol-Gel Sci. Technol. 2016, 81, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Fuss, T.; Moguš-Milanković, A.; Ray, C.S.; Lesher, C.E.; Youngman, R.; Day, D.E. Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure. J. Non-Cryst. Solids 2006, 352, 4101–4111. [Google Scholar] [CrossRef]
- Ye, J.; Wen, C.; Wu, J.; Wen, N.; Sa, B.; Zhang, T. Mechanical and bioactive properties of lithium disilicate glass-ceramic mixtures synthesized by two different methods. J. Non-Cryst. Solids 2019, 509, 1–9. [Google Scholar] [CrossRef]
- Salah, A.A.; Jozwiak, P.; Zaghib, K.; Garbarczyk, J.E.; Gendron, F.; Mauger, A.; Julien, C. FTIR fearures of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim. Acta Parta A 2006, 65, 1007–1013. [Google Scholar] [CrossRef]
- Moustafa, M.G.; Sanad, M.M.S.; Hassaan, M.Y. NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries. J. Alloys Compd. 2020, 845, 156338. [Google Scholar] [CrossRef]
- Sasmal, N.; Garai, M.; Karmakar, B. Preparation and characterization of novel foamed porous glass-ceramics. Mater. Charact. 2015, 103, 90–100. [Google Scholar] [CrossRef]
- Garai, M.; Sasmal, S.; Molla, A.R.; Singh, S.P.; Tarafder, A.; Karmakar, B. Effects of nucleating agents on crystallization and microstructure of fluorophlogopite mica-containing glass–ceramics. J. Mater. Sci. 2014, 49, 1612–1623. [Google Scholar] [CrossRef]
- Garai, M.; Sasmal, N.; Molla, A.R.; Karmakar, B. Structural effects of Zn+2/Mg+2 ratios on crystallization characteristics and microstructure of fluorophlogopite mica-containing glass-ceramics. Solid State Sci. 2015, 44, 10–21. [Google Scholar] [CrossRef]
- McCracken, W.J.; Clark, D.E.; Hench, L.L. Aqueous durability of lithium disilicate glass-ceramics. American Ceram. Soc. Bull. 1982, 61, 1218–1223. [Google Scholar]
- Charles, R.J. Static fatigue of glass. J. Appl. Phys. 1958, 29, 1549–1553. [Google Scholar] [CrossRef]
- Goyer, R.A. Toxic effects of metals: Lithium. In Toxicology-The Basic Science of Poisons; Amdur, M.O., Doull, J., Klaassen, C.D., Eds.; Pergamon Press. Inc.: Elmsford, NY, USA, 1984; pp. 665–666. [Google Scholar]
Solution | pH (21.3 °C) | Conditions | Temperature | Time Interval (Test Duration) |
---|---|---|---|---|
4% acetic acid | 2.4 | quasi-dynamic | 37 °C | 12 h (96 h) |
4% acetic acid * | 2.4 | static | 80 °C | 16 h |
NaOH solution | 10 | quasi-dynamic | 37 °C | 12 h (96 h) |
Oxides | wt.% of Oxide (ICP OES) | wt.% of Oxide Ref. [15] |
---|---|---|
Li2O | 14.3 ± 0.8 | 11.0–19.0 |
P2O5 | 4.3 ± 0.2 | 0.0–11.0 |
Al2O3 | 4.8 ± 0.1 | 0.0–5.0 |
K2O | 9.1 ± 1.3 | 0.0–13.0 |
SiO2 | 67.5 * | 57.0–80.0 |
wt% of Phases | Material A | Material B |
---|---|---|
Li2Si2O5 | 55.0 | 65.5 |
Li3PO4 | 5.0 | 6.3 |
amorphous phase | 40.0 | 27.8 |
Oxides | wt.% of Oxide Sample A | wt.% of Oxide Sample B |
---|---|---|
Li2O | 6.6 | 1.5 |
P2O5 | 3.1 | 15.9 |
Al2O3 | 11.7 | 13.5 |
K2O | 22.3 | 25.7 |
SiO2 | 56.3 | 43.4 |
Wavenumber (cm−1) | Bands Assignement |
---|---|
Before corrosion | |
3400 with an indistinct shoulder near 3630 | stretching vibrations of O-H groups |
1107, 1005, 960, 910 | asymmetric stretching vibrations of Si–O bond |
784, 753 and 629 | symmetric Si–O vibrations |
below 600 | bending Si–O vibrations |
1200–1050 | asymmetric stretching vibration (PO4)3− |
After corrosion according ISO 6872 test | |
3600-3100 | increasing contribution of O–H groups |
>1005 | increasing contribution of the amorphous phase |
band shift 910 to 892 | changes in the sample structure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Švančárková, A.; Galusková, D.; Nowicka, A.E.; Pálková, H.; Galusek, D. Effect of Corrosive Media on the Chemical and Mechanical Resistance of IPS e.max® CAD Based Li2Si2O5 Glass-Ceramics. Materials 2022, 15, 365. https://doi.org/10.3390/ma15010365
Švančárková A, Galusková D, Nowicka AE, Pálková H, Galusek D. Effect of Corrosive Media on the Chemical and Mechanical Resistance of IPS e.max® CAD Based Li2Si2O5 Glass-Ceramics. Materials. 2022; 15(1):365. https://doi.org/10.3390/ma15010365
Chicago/Turabian StyleŠvančárková, Anna, Dagmar Galusková, Aleksandra Ewa Nowicka, Helena Pálková, and Dušan Galusek. 2022. "Effect of Corrosive Media on the Chemical and Mechanical Resistance of IPS e.max® CAD Based Li2Si2O5 Glass-Ceramics" Materials 15, no. 1: 365. https://doi.org/10.3390/ma15010365
APA StyleŠvančárková, A., Galusková, D., Nowicka, A. E., Pálková, H., & Galusek, D. (2022). Effect of Corrosive Media on the Chemical and Mechanical Resistance of IPS e.max® CAD Based Li2Si2O5 Glass-Ceramics. Materials, 15(1), 365. https://doi.org/10.3390/ma15010365