Improving Fast Charging-Discharging Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Electronic Conductor LaNiO3 Crystallites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of NCM811 Cathode Materials
2.2. Synthesis of LaNiO3 Surface-Modified NCM811
2.3. Material Characterization
2.4. Electrochemical Measurements
3. Results
3.1. Physical Characterizations
3.2. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- An, J.; Shi, L.Y.; Chen, G.; Li, M.; Liu, H.J.; Yuan, S.; Chen, S.; Zhang, D. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 19738–19744. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, L.; Dong, C.; Zhang, H.; Zhang, M.; Liu, Y.; Zhou, Y.; Han, Y.; Chen, Y. Enhanced cycling stability of boron-doped lithium-rich layered oxide cathode materials by suppressing transition metal migration. J. Mater. Chem. A 2019, 7, 3375–3383. [Google Scholar] [CrossRef]
- Park, K.J.; Lim, B.B.; Choi, M.H.; Jung, H.G.; Sun, Y.K.; Haro, M.; Vicente, N.; Bisquert, J.; Garcia-Belmonte, G. A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. J. Mater. Chem. A 2015, 3, 22183–22190. [Google Scholar] [CrossRef]
- Braun, P.V.; Cho, J.; Pikul, J.H.; King, W.P.; Zhang, H. High power rechargeable batteries. Curr. Opin. Solid State Mater. Sci. 2012, 16, 186–198. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhu, Y.Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550. [Google Scholar] [CrossRef]
- Wang, X.; Ding, Y.L.; Deng, Y.P.; Chen, Z. Ni-Rich/Co-Poor Layered Cathode for Automotive Li-Ion Batteries: Promises and Challenges. Adv. Energy Mater. 2020, 10, 1903864. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Chu, Z.Y.; Feng, X.N.; O’Kane, S.; Liu, X.H.; Chen, J.Y.; Ji, C.Z.; Endler, E.; Li, R.H.; Liu, L.S.; et al. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 100011. [Google Scholar] [CrossRef]
- Rodrigues, M.T.F.; Son, S.B.; Colclasure, A.M.; Shkrob, I.A.; Trask, S.E.; Bloom, I.D.; Abraham, D.P. How Fast Can a Li-Ion Battery Be Charged? Determination of Limiting Fast Charging Conditions. ACS Appl. Energy Mater. 2021, 4, 1063–1068. [Google Scholar] [CrossRef]
- Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.X.; Zhang, Y.Y.; Li, W.L.; Ma, B.; Chen, X.D. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 46, 5926–5940. [Google Scholar] [CrossRef] [PubMed]
- Yoo, G.W.; Son, J.T. Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating. J. Electrochhem. Sci. Technol. 2016, 7, 179–184. [Google Scholar] [CrossRef]
- Hu, J.W.; Fan, F.S.; Zhang, Q.; Zhong, S.W.; Ma, Q.X. Effects of long-term fast charging on a layered cathode for lithium-ion batteries. J. Energy Chem. 2021, 67, 604–612. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.X.; Deng, M.M.; Wang, S.; Aqsa, Y.; Hu, Q.; Chen, C.H. Cesium doping to improve the electrochemical performance of layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode material. J. Alloys Compd. 2019, 791, 100–108. [Google Scholar] [CrossRef]
- Zou, P.J.; Lin, Z.H.; Fan, M.N.; Wang, F.; Liu, Y.; Xiong, X.H. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl. Surf. Sci. 2020, 504, 144506. [Google Scholar] [CrossRef]
- Xin, F.X.; Zhou, H.; Chen, X.B.; Zuba, M.; Chernova, N.; Zhou, G.W.; Whittingham, M.S. Li-Nb-O coating/substitution enhances the electrochemical performance of LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode. ACS Appl. Mater. Interfaces 2019, 11, 34889–34894. [Google Scholar] [CrossRef]
- Becker, D.; Börner, M.; Nölle, R.; Diehl, M.; Klein, S.; Rodehorst, U.; Schmuch, R.; Winter, M.; Placke, T. Surface Modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 18404–18414. [Google Scholar] [CrossRef]
- Yang, H.; Wu, H.; Ge, M.; Li, L.; Yuan, Y.; Yao, Q.; Chen, J.; Xia, L.; Zheng, J.; Chen, Z.; et al. Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries. Adv. Funct. Mater. 2019, 29, 1808825. [Google Scholar] [CrossRef]
- Hou, P.; Yin, J.; Ding, M.; Huang, J.; Xu, X. Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives. Small 2017, 13, 1701802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.F.; Chen, G.; Chen, L.; Li, W.K.; Zhang, Q.Y.; Yang, Z.R.; Lu, Y.; Bao, L.Y.; Tan, J.; Chen, R.J.; et al. Exposing the {010} Planes by Oriented Self-Assembly with Nanosheets To Improve the Electrochemical Performances of Ni-Rich Li[Ni0.8Co0.1Mn0.1]O2 Microspheres. ACS Appl. Mater. Interfaces 2018, 10, 6407–6414. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Nguyen, H.; Zarrabeitia, M.; Liang, H.; Geiger, D.; Kim, J.; Kaiser, U.; Passerini, S.; Iojoiu, C.; Bresser, D. Lithium Phosphonate Functionalized Polymer Coating for High-energy Li[Ni0.8Co0.1Mn0.1]O2 with Superior Performance at Ambient and Elevated Temperatures. Adv. Funct. Mater. 2021, 31, 2105343. [Google Scholar] [CrossRef]
- Jamil, S.; Wang, G.; Yang, L.; Xie, X.; Cao, S.; Liu, H.; Chang, B.; Wang, X. Suppressing H2–H3 phase transition in high Ni–low Co layered oxide cathode material by dual modification. J. Mater. Chem. A 2020, 8, 21306–21316. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, L.B.; Wei, H.X.; Zhang, X.H.; He, Z.J.; Li, Y.J.; Zheng, J.C. Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 2019, 65, 104043. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.; Jeong, J.; Kim, D.; Chung, K.; Roh, K.; Kim, K. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance. J. Power Sources 2017, 360, 206–214. [Google Scholar] [CrossRef]
- Song, B.H.; Li, W.D.; Oh, S.M.; Manthiram, A. Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 9718–9725. [Google Scholar] [CrossRef]
- Ran, Q.W.; Zhao, H.Y.; Hu, Y.Z.; Shen, Q.Q.; Liu, W.; Liu, J.T.; Shu, X.H.; Zhang, M.L.; Liu, S.S.; Tan, M.; et al. Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode for Li-ion batteries at high cut-off voltage. Electrochim. Acta 2018, 289, 82–93. [Google Scholar] [CrossRef]
- Li, D.; Xie, R.; Tian, M.; Ma, S.; Gou, L.; Fan, X.; Shi, Y.; Yong, H.; Hao, L. Improving high-rate performance of mesoporous Li2FeSiO4/Fe7SiO10/C nanocomposite cathode with a mixed valence Fe7SiO10 nanocrystal. J. Mater. Chem. A 2014, 2, 4375–4383. [Google Scholar] [CrossRef]
- Sim, S.J.; Lee, S.H.; Jin, B.S.; Kim, H.S. Use of carbon coating on LiNi0.8Co0.1Mn0.1O2 cathode material for enhanced performances of lithium-ion batteries. Sci. Rep. 2020, 10, 11114. [Google Scholar] [CrossRef]
- Hu, Z.G.; Li, W.W.; Li, Y.W.; Zhu, M.; Zhu, Z.Q.; Chu, J.H. Electronic properties of nanocrystalline LaNiO3 and La0.5Sr0.5CoO3 conductive films grown on silicon substrates determined by infrared to ultraviolet reflectance spectra. Appl. Phys. Lett. 2009, 94, 488. [Google Scholar] [CrossRef]
- Zhang, X.D.; Hao, J.J.; Wu, L.C.; Guo, Z.M.; Ji, Z.H.; Luo, J.; Chen, C.G.; Shu, J.F.; Long, H.M.; Yang, F.; et al. Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta 2018, 283, 1203–1212. [Google Scholar] [CrossRef]
- Hofer, H.E.; Schmidberger, R. Electronic Conductivity in the La(Cr, Ni)O3 Perovskite System. J. Electrochem. Soc. 1994, 141, 782–786. [Google Scholar] [CrossRef]
- Chen, M.S.; Wu, T.B.; Wu, J.M. Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films. Appl. Phys. Lett. 1996, 68, 1430–1432. [Google Scholar] [CrossRef]
- Rajeev, K.P.; Shivashankar, G.V.; Raychaudhuri, A.K. Low-Temperature Electronic Properties of a Normal Conducting Perovskite Oxide (LaNiO3). Solid State Commun. 1991, 79, 591–595. [Google Scholar] [CrossRef]
- Fowlie, J.; Gibert, M.; Tieri, G.; Gloter, A.; Iniguez, J.; Filippetti, A.; Catalano, S.; Gariglio, S.; Schober, A.; Guennou, M.; et al. Conductivity and Local Structure of LaNiO3 Thin Films. Adv. Mater. 2017, 29, 1605197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babulal, L.M.; Yang, C.C.; Wu, S.H.; Chien, W.C.; Lue, S.J. Enhanced performance of a Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material formed through Taylor flow synthesis and surface modification with Li2MoO4. Chem. Eng. J. 2020, 413, 127150. [Google Scholar] [CrossRef]
- Li, S.M.; Wu, J.; Li, J.Y.; Liu, G.B.; Liu, H. Facilitated Coating of Li3PO4 on the Rough Surface of LiNi0.85Co0.1Mn0.05O2 Cathodes by Synchronous Lithiation. ACS Appl. Energy Mater. 2021, 4, 2257–2265. [Google Scholar] [CrossRef]
- Ryu, H.H.; Park, G.T.; Chong, S.Y.; Sun, Y.K. Suppressing detrimental phase transitions via tungsten doping of LiNiO2 cathode for next-generation lithium-ion batteries. J. Mater. Chem. A 2019, 7, 18580–18588. [Google Scholar] [CrossRef]
- Si, Z.; Shi, B.Z.; Huang, J.; Yu, Y.; Han, Y.; Zhang, J.L.; Li, W. Titanium and fluorine synergetic modification improves the electrochemical performance of Li(Ni0.8Co0.1Mn0.1)O2. J. Mater. Chem. A 2021, 9, 9354–9363. [Google Scholar] [CrossRef]
- Zheng, J.X.; Ye, Y.K.; Liu, T.C.; Xiao, Y.G.; Wang, C.M.; Wang, F.; Pan, F. Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Acc. Chem. Res. 2019, 52, 2201–2209. [Google Scholar] [CrossRef]
- Retuerto, M.; Pereira, A.G.; Pérez-Alonso, F.J.; PenA, M.A.; Fierro, J.L.; Alonso, J.A.; Fernández-Díaz, M.T.; Pascual, L.; Rojas, S. Structural effects of LaNiO3 as electrocatalyst for the oxygen reduction reaction. Appli. Catal. B Environ. 2017, 203, 363–371. [Google Scholar] [CrossRef]
- Ding, G.Y.; Li, Y.H.; Gao, Y.; Wang, Q.L.; Zhu, Z.; Jing, X.G.; Yan, F.Q.; Yue, Z.H.; Li, X.M.; Sun, F.G. Uniform Coating of Se on Selenophilic Surfaces of Nickel-Rich Layered Oxide Cathode Materials for High Performance Li-Ion Batteries. ACS Sustain. Chem. Eng. 2020, 8, 9632–9640. [Google Scholar] [CrossRef]
- Huang, Y.P.; Yao, X.; Hu, X.C.; Han, Q.Y.; Wang, S.Q.; Ding, L.X.; Wang, H.H. Surface coating with Li-Ti-O to improve the electrochemical performance of Ni-rich cathode material. Appl. Surf. Sci. 2019, 489, 913–921. [Google Scholar] [CrossRef]
- Zhang, D.K.; Liu, Y.; Wu, L.; Feng, L.W.; Jin, M.L.; Zhang, R.; Jin, M.L. Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material. Electrochim. Acta 2019, 328, 135086. [Google Scholar] [CrossRef]
- Mofid, W.E.; Ivanov, S.; Konkin, A.; Bund, A. A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution. J. Power Sources 2014, 268, 414–422. [Google Scholar] [CrossRef]
- Song, X.; Liu, G.X.; Yue, H.F.; Luo, L.; Yang, S.Y.; Huang, Y.Y.; Wang, C.R. A Novel Low-Cobalt Long-Life LiNi0.88Co0.06Mn0.03Al0.03O2 Cathode Material for Lithium Ion Batteries. Chem. Eng. J. 2020, 407, 126301. [Google Scholar] [CrossRef]
- Yuan, J.; Wen, J.W.; Zhang, J.B.; Chen, D.M.; Zhang, D.W. Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries. Electrochim. Acta 2017, 230, 116–122. [Google Scholar] [CrossRef]
- Yang, Z.G.; Xiang, W.; Wu, Z.G.; He, F.R.; Zhang, J.; Xiao, Y.; Zhong, B.H.; Guo, X.D. Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceram. Int. 2017, 43, 3866–3872. [Google Scholar] [CrossRef]
- Zhang, L.J.; Jiang, J.C.; Zhang, C.P.; Wu, B.R.; Wu, F. High-rate layered lithium-rich cathode nanomaterials for lithium-ion batteries synthesized with the assist of carbon spheres templates. J. Power Sources 2016, 331, 247–257. [Google Scholar] [CrossRef]
- Meng, J.X.; Xu, H.Z.; Ma, Q.X.; Li, Z.F.; Xu, L.S.; Chen, Z.J.; Cheng, B.M.; Zhong, S.W. Precursor pre-oxidation enables highly exposed plane {010} for high-rate Li-rich layered oxide cathode materials. Electrochim. Acta 2019, 309, 326–338. [Google Scholar] [CrossRef]
Parameter | Pristine NCM811 | NCM811@LNO | NCM811@3LNO |
---|---|---|---|
a (Å) | 2.8731 | 2.8709 | 2.8720 |
c (Å) | 14.1963 | 14.1951 | 14.1959 |
c/a | 4.9411 | 4.9444 | 4.9428 |
I(003)/I(104) | 1.5893 | 1.8820 | 1.6045 |
Electrode | First Charge Capacity (mAh g−1) | First Discharge Capacity (mAh g−1) | First Coulombic Efficiency (%) |
---|---|---|---|
pristine NCM811 | 237.06 | 194.67 | 82.12 |
NCM811@LNO | 218.24 | 192.28 | 88.11 |
NCM811@3LNO | 289.53 | 246.40 | 85.10 |
Electrode | Rs (Ω) | Rsf (Ω) | Rct (Ω) | DLi+ (cm2 s−1) |
---|---|---|---|---|
pristine NCM811 | 4.35 | 39.94 | 173.30 | 1.17 × 10−14 |
NCM811@LNO | 2.88 | 24.94 | 74.88 | 4.61 × 10−14 |
NCM811@3LNO | 4.06 | 8.96 | 108.50 | 3.21 × 10−14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Li, D.; Zhang, Q.; Gao, J.; Zhang, L.; Liu, X. Improving Fast Charging-Discharging Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Electronic Conductor LaNiO3 Crystallites. Materials 2022, 15, 396. https://doi.org/10.3390/ma15010396
Li T, Li D, Zhang Q, Gao J, Zhang L, Liu X. Improving Fast Charging-Discharging Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Electronic Conductor LaNiO3 Crystallites. Materials. 2022; 15(1):396. https://doi.org/10.3390/ma15010396
Chicago/Turabian StyleLi, Tongxin, Donglin Li, Qingbo Zhang, Jianhang Gao, Long Zhang, and Xiaojiu Liu. 2022. "Improving Fast Charging-Discharging Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Electronic Conductor LaNiO3 Crystallites" Materials 15, no. 1: 396. https://doi.org/10.3390/ma15010396
APA StyleLi, T., Li, D., Zhang, Q., Gao, J., Zhang, L., & Liu, X. (2022). Improving Fast Charging-Discharging Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Electronic Conductor LaNiO3 Crystallites. Materials, 15(1), 396. https://doi.org/10.3390/ma15010396