Investigation of the Influence of Moisture Content on Fatigue Behaviour of HPC by Using DMA and XRCT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Geometry
2.2. Sample Preparation and Application
2.3. Test Setup—Fatigue Test
2.4. Experimental Programme
2.5. Dynamic Mechanical Analysis Setup
2.6. X-ray Computed Tomography (XRCT) Setup
3. Results
3.1. Static Compressive Strength
3.2. Number of Cycles to Failure
3.3. Strain Development as a Damage Indicator
3.4. Temperature Development
3.5. DMA—Dynamic Mechanical Analysis
3.6. X-ray Computed Tomography Scans
4. Conclusions
- The different storage conditions caused a different moisture content in the pore space of the concrete. Furthermore, the moisture had a negative effect on the fatigue resistance. At the same applied stress level, the fatigue resistance decreased as the moisture of the concrete increased.
- An influence of the moisture content on the evolution of strains could be observed. For the dry case, the increase in strains per load cycle was smaller than for the water-wet samples.
- The moisture content affected the concrete temperature evolution during the fatigue test. Considering the fact that the compressive strength of concrete is characterised by a temperature dependence, an indirect influence of the compressive strength during the fatigue test could be concluded from the observed moisture–temperature coupling.
- It was possible to detect cracks inside the concrete test specimens with the presented XRCT test setup. The cracks in the different damage phases increased and became larger due to cyclic loading.
- The cracks followed the interface between the cement matrix and the aggregates (sand). It was assumed that the cracks caused by cyclic loading (in the fatigue test) were spread out along the grain boundaries.
- The small-strain DMA method allowed for the (visco)-elastic characterisation of the damage state of the material with high accuracy.
- The damaged state could be characterised by a significant decrease in the value for the effective Young’s modulus compared to the initial state.
- Furthermore, a (dispersive) increase in the Young’s modulus over frequency for each sample was found. This dispersion effect was even more pronounced for wet samples.
- The amplitude sweeps, characterised at a frequency of 100 Hz, showed that the damage could be clearly detected in the measured values of the Young’s modulus.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oneschkow, N.; Lohaus, L. Zum Ermüdungsnachweis von druckschwellbeanspruchtem Beton, Teil 1: Struktur des Ermüdungsnachweises. Beton-und Stahlbetonbau 2017, 112, 530–540. [Google Scholar] [CrossRef]
- Oneschkow, N.; Lohaus, L. Zum Ermüdungsnachweis von druckschwellbeanspruchtem Beton, Teil 2: Sicherheitsüberlegungen und Potenzial für Weiterentwicklungen. Beton-und Stahlbetonbau 2017, 112, 611–622. [Google Scholar] [CrossRef]
- Markert, M.; Veit, B.; Garrecht, H. Temperature and humidity induced damage progresses in concrete due to pure compressive fatigue loading. In Proceedings of the fib Symposium, Krakow, Poland, 27–29 May 2019; Derkowski, W., Gwoździewicz, P., Hojdys, Ł., Krajewski, P., Pańtak, M., Eds.; FIB: Laussane, Switzerland, 2019; pp. 1928–1935. [Google Scholar]
- Tomann, C.; Oneschkow, N. Influence of moisture content in the microstructure on the fatigue deterioration of high-strength concrete. Struct. Concr. 2019, 20, 1204–1211. [Google Scholar] [CrossRef]
- Hümme, J. Ermüdungsverhalten von Hochfestem Beton unter Wasser; Institut für Baustoffe: Hannover, Germany, 2018. [Google Scholar]
- Hohberg, R. Zum Ermüdungsverhalten von Beton. Ph.D. Thesis, Technische Universität Berlin, Ehemalige Fakultät VI–Bauingenieurwesen und Angewandte Geowissenschaften, Berlin, Germany, 2004. [Google Scholar]
- Markert, M.; Laschewski, H. Influencing factors on the temperature development in cyclic compressive fatigue tests: An overview. Otto Graf J. 2020, 19, 147–162. [Google Scholar]
- Deutscher, M.; Tran, N.L.; Scheerer, S. Experimental Investigations on the Temperature Increase of Ultra-High Performance Concrete under Fatigue Loading. Appl. Sci. 2019, 9, 4087. [Google Scholar] [CrossRef] [Green Version]
- Deutscher, M.; Markert, M.; Tran, N.L.; Scheerer, S. Influence of the compressive strength of concrete on the temperature increase due to cyclic loading. In Proceedings of the Fib Symposium Shanghai: Concrete Innovations in Materials, Design and Structures, online, 22–24 November 2020; pp. 773–780. [Google Scholar]
- Scheiden, T.; Oneschkow, N. Influence of coarse aggregate type on the damage mechanism in high-strength concrete under compressive fatigue loading. Struct. Concr. 2019, 20, 1212–1219. [Google Scholar] [CrossRef]
- Otto, C.; Oneschkow, N.; Lohaus, L. Ermüdungsverhalten von hochfesten Vergussmörteln. In Beiträge zur 7. DAfStb-Jahrestagung mit 60; Forschungskolloquium; Institutionelles Repositorium der Leibniz Universität Hannover: Hannover, Germany, 2019; pp. 56–64. [Google Scholar] [CrossRef]
- Oneschkow, N.; Timmermann, T. Influence of the composition of high-strength concrete and mortar on the compressive fatigue behaviour. Mater. Struct. 2021. submitted. [Google Scholar]
- Schultz, R.A. Limits on Strength and Deformation Properties of Jointed Basaltic Rock Masses. Rock Mech. Rock Eng. 1995, 28, 1–15. [Google Scholar] [CrossRef]
- Batzle, M.L.; Han, D.; Hofmann, R. Fluid mobility and frequency-dependent seismic velocity—Direct measurement. Geophysics 2006, 71, N1–N9. [Google Scholar] [CrossRef] [Green Version]
- Pimienta, L.; Fortin, J.; Guéguen, Y. Experimental study of Young’s modulus dispersion and attenuation in fully saturated sandstones. Geophysics 2015, 80, L57–L72. [Google Scholar] [CrossRef]
- Madonna, C.; Tisato, N. A new Seismic Wave Attenuation Module to experimentally measure low-frequency attenuation in extensional mode. Geophys. Prospect. 2013, 61, 302–314. [Google Scholar] [CrossRef]
- Pimienta, L.; Fortin, J.; Guéguen, Y. Bulk modulus dispersion and attenuation in sandstones. Geophysics 2015, 80, D111–D127. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Quintal, B.; Steeb, H.; Frehner, M.; Schmalholz, S.B. Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media. J. Geophys. Res. 2011, 116, B01201. [Google Scholar] [CrossRef] [Green Version]
- Carmignato, S.; Dewulf, W.; Leach, R. Industrial X-ray Computed Tomography; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Brisard, S.; Serdar, M.; Monteiro, P.J. Multiscale X-ray tomography of cementitious materials: A review. Cem. Concr. Res. 2020, 128, 105824. [Google Scholar] [CrossRef]
- Ruf, M.; Steeb, H. An open, modular, and flexible micro X-ray computed tomography system for research. Rev. Sci. Instrum. 2020, 91, 113102. [Google Scholar] [CrossRef] [PubMed]
- Ruf, M.; Taghizadeh, K.; Steeb, H. Visualizing Particle Networks in Granular Media by in situ X-ray Computed Tomography, Survey for Applied Mathematics and Mechanics (GAMM Mitteilungen). Under Review. 2021. [Google Scholar]
- Fib Model Code 2010. fib Model Code for Concrete Structures 2010. In International Federation of Structural Concrete (Fib); Ernst & Sohn: Lausanne, Switzerland; Berlin, Germany, 2013.
- Oneschkow, N. Analyse des Ermüdungsverhaltens von Beton anhand der Dehnungsentwicklung. Ph.D. Thesis, Leibniz Universität Hannover, Hannover, Germany, 2014. [Google Scholar]
- Holmen, J.O. Fatigue of Concrete by Constant and Variable Amplitude Loading; The Norwegian Institute of Technology, University of Trondheim: Trondheim, Norway, 1979. [Google Scholar]
- Klausen, D. Festigkeit und Schädigung von Beton bei häufig wiederholter Beanspruchung. Ph.D. Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 1978. [Google Scholar]
- Elsmeier, K. Einfluss der Probekörpererwärmung auf das Ermüdungsverhalten von hochfestem Vergussbeton. Ph.D. Thesis, Leibniz Universität Hannover, Hannover, Germany, 2019. [Google Scholar]
- Markert, M.; Garrecht, H. Influence of temperature increase in fatigue behavior of concrete during compressive fatigue loading. In Proceedings of the 13th fib International PhD Symposium in Civil Engineering, Paris, France, 21–22 July 2021. [Google Scholar]
- Deutscher, M.; Markert, M.; Scheerer, S. Influence of temperature on the compressive strength of high performance and ul-tra-high performance concretes. Struct. Concr. 2021. [Google Scholar] [CrossRef]
Component (–) | Density (kg/dm³) | Amount (kg/m³) |
---|---|---|
CEM I 52.5 R—SR3 (na) | 3.094 | 500 |
Quartz Sand H33 (0/0.5 mm) | 2.70 | 75 |
Sand 0/2 | 2.64 | 850 |
Basalt 2/5 | 3.06 | 350 |
Basalt 5/8 | 3.06 | 570 |
Polycarboxylatether (PCE) Superlasticizer | 1.05 | 4.25 |
Stabilizer | 1.10 | 2.42 |
Water | 1.00 | 176 |
Series | Day 1 | Days 1–7 | Days 8–56 | Days 56-Test | Before Testing | Moisture Content % |
---|---|---|---|---|---|---|
D (Dry Specimen) | Strip the formwork | Underwater | 20 °C/65% | 105 °C | Wrap | ~0.1 |
C (Climate Chamber Storage) | 20 °C/65% | 20 °C/65% | 4.0 | |||
UW (Underwater Storage) | Underwater | Underwater | 5.1 |
Series | Storage Condition | So | Su | Test Frequency (Hz) |
---|---|---|---|---|
HPC8 | D | 0.70/0.75/0.80 | 0.05 | 10 |
HPC8 | N | 0.55/0.60/0.70/0.80 | 0.05 | 10 |
HPC8 | UW | 0.50/0.55/0.60/0.70 | 0.05 | 10 |
HPC2 | D | 0.70 | 0.05 | 10 |
HPC2 | UW | 0.70 | 0.05 | 10 |
HPC Variation | HPC8 | HPC8 | HPC8 | HPC2 | HPC2 |
---|---|---|---|---|---|
Diameter/height | 60/180 | 60/180 | 60/180 | 30/75 | 30/75 |
Storage condition | D | C | UW | D | UW |
Static compressive strength fc,cyl (MPa) | 98.4–104.0 | 95.4–103.7 | 106.3–109.9 | 97.7 | 88.0 |
Standard deviation (MPa) | 3.63–7.50 | 3.70–7.36 | 4.55–7.31 | 5.29 | 8.00 |
Phase 0 (Undamaged) | Phases I–II | Phase II | Phases II–III | Phase III |
---|---|---|---|---|
No cracks | Cracks w~20–30 µm | Cracks w~30–45 µm | Cracks w~50–80 µm | Cracks w~20–50 µm |
Fine hairline cracks along grain interfaces | Cracks along grain interfaces, through larger pores | Extensive cracks along grain interfaces, through larger pores | Extensive cracks at grain interfaces |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markert, M.; Katzmann, J.; Birtel, V.; Garrecht, H.; Steeb, H. Investigation of the Influence of Moisture Content on Fatigue Behaviour of HPC by Using DMA and XRCT. Materials 2022, 15, 91. https://doi.org/10.3390/ma15010091
Markert M, Katzmann J, Birtel V, Garrecht H, Steeb H. Investigation of the Influence of Moisture Content on Fatigue Behaviour of HPC by Using DMA and XRCT. Materials. 2022; 15(1):91. https://doi.org/10.3390/ma15010091
Chicago/Turabian StyleMarkert, Martin, Josef Katzmann, Veit Birtel, Harald Garrecht, and Holger Steeb. 2022. "Investigation of the Influence of Moisture Content on Fatigue Behaviour of HPC by Using DMA and XRCT" Materials 15, no. 1: 91. https://doi.org/10.3390/ma15010091
APA StyleMarkert, M., Katzmann, J., Birtel, V., Garrecht, H., & Steeb, H. (2022). Investigation of the Influence of Moisture Content on Fatigue Behaviour of HPC by Using DMA and XRCT. Materials, 15(1), 91. https://doi.org/10.3390/ma15010091