A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks
Abstract
:1. Introduction
- material of sliding strips melting in case of arcing and damages caused by an electric arc (not proper contact force);
- tearing off of a piece of carbon sliding strip;
- cracks on the surface penetrating a sliding strip;
- peeling off the top layer of a sliding strip in direct contact with the catenary.
- intense abrasive wear and peeling of the contact wire and the sliding strip surface;
- spot erosion;
- the extraction and transfer of material particles or the deposition of molten metal condensate.
1.1. Wear Pantograph Sliding Strips
1.2. State of the Art
2. Materials and Methods
- time of raising the current collector to the rated value;
- fall time of the current collector;
- correct control of the collectors from both cabins, correct movement of the collector;
- average static pressure;
- force difference when lifting and lowering;
- holding force measurement (folded);
- checking the degree of wear of the contact inserts of the slider;
- insulation resistance measurement.
2.1. Causes of the Replacement of the Sliding Strip and Its Thickness
- Wop replacement of the pantograph
- Wn replacement of the pantograph sliding strip
- Nl the locomotive number
- Nop the pantograph number
- Top the type of pantograph
- Gn1 thickness of the first carbon sliding strip
- Gn2 thickness of the second carbon sliding strip
- N1 replacement of the sliding strip due to even wear of the sliders
- N2 replacement of the sliding strip due to detachment of a fragment of the sliding strip, material extraction or burning of the sliding strip
- N3 replacement of the sliding strip due to uneven wear of the sliders
- i the measure number
2.2. Wear and Damage Prediction Method
2.3. Summary of Predictive Models
- Levenberg–Marquardt training algorithm (Levenberg–Marquardt back-propagation TRAINLM);
- Bayesian Regularization back-propagation TRAINBR;
- Riedmiller and Braun algorithm RPROP (Resilient Backpropagation -TRAINRP);
- Steepest Descent Algorithm (TRAINGD);
- Gradient Descent Algorithm with Moment—TRAINGDM;
- The method of gradients coupled with the Powell-Beale algorithm (TRAINCGB);
- The method of gradients coupled with the Polak-Ribier algorithm (TRAINCGP).
3. Results
3.1. Examined Prediction Models
3.2. Results of the Prediction Model
- —First technical condition—able to further use
- —Second technical condition—the limited ability of further use, it will be necessary to replace the sliding strip for the next inspection
- —Third technical condition—not able to further use—it is necessary to replace the sliding strip/pantograph
- —the value obtained during the prediction thanks to the use of themodel 12.
- for technical condition : 62.4%;
- for technical condition : 85.1%;
- for technical condition : 100%.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sitarz, M.; Adamiec, A.; Mańka, A. Classification of damages of plain carbon caps and pantographheads. TTS Tech. Transp. Szyn. 2016, 23, 71–74. [Google Scholar]
- Decyzja Komisji 2008/232/WE z dnia 26 kwietnia 2011 r. dotycząca Technicznej Specyfikacji Interoperacyjności (TSI) podsystemu “Tabor” transeuropejskiego systemu kolei dużych prędkości: Dz. Urz. L 84 z 26.03.2008 r. Available online: sip.lex.pl/akty-prawne/dzienniki-UE/decyzja-2008-232-we-dotyczaca-specyfikacji-technicznej-interoperacyjnosci-67755436 (accessed on 1 October 2021).
- Polish Law: Rozporządzenie Ministra Infrastruktury z dnia 7 stycznia 2008 r. zmieniające rozporządzenie w sprawie zasadniczych wymagań dotyczących interoperacyjności kolei oraz procedur oceny zgodności dla transeuropejskiego systemu kolei konwencjonalnej: Dz.U.2008.11.65. Available online: sip.lex.pl/akty-prawne/dzu-dziennik-ustaw/zm-rozporzadzenie-w-sprawie-zasadniczych-wymagan-dotyczacych-17404824 (accessed on 1 October 2021).
- Polish Law: Rozporządzenie Ministra Transportu, Budownictwa i Gospodarki Morskiej z dnia 2 maja 2012 r. w sprawie interoperacyjności systemu kolei: Dz.U.2012 poz. 492. Available online: isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20120000492 (accessed on 1 October 2021).
- Woźniak, K. Wprowadzenie Obowiązku Stosowania Węglowych Nakładek Ślizgowych na Pantografach Pojazdów Trakcyjnych Przewoźników Korzystających z Sieci Trakcyjnej Zarządzanej Przez PKP Polskie Linie Kolejowe S.A.; PKP Polskie Linie Kolejowe S.A.: Warszawa, Poland, 2010; pp. 1–16. [Google Scholar]
- Abdullah, M.A.; Michitsuji, Y.; Nagai, M.; Miyajima, N. Integrated simulation between flexible body of catenary and active control pantograph for contact force variation control. J. Mech. Syst. Transp. Logist. 2010, 3, 166–177. [Google Scholar] [CrossRef]
- Abdullah, M.; Michitsuji, Y.; Nagai, M.; Miyajima, N. Analysis of contact force variation between contact wire and pantograph based on multibody dynamics. J. Mech. Syst. Transp. Logist. 2010, 3, 552–567. [Google Scholar] [CrossRef] [Green Version]
- Aboshi, M. Precise measurement and estimation method for overhead contact line unevenness. EEJ Trans. Ind. Appl. 2004, 124, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Aboshi, M.; Manabe, K. Analyses of contact force fluctuation between catenary and pantograph. Q. Rep. RTRI 2000, 41, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Allotta, B.; Pugi, L.; Bartolini, F. An active suspension system for railway pantographs: The T2006 prototype. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2009, 223, 15–29. [Google Scholar] [CrossRef]
- Allotta, B.; Pugi, L.; Rindi, A.; Papi, M. Innovative solutions for active railway pantograph. WIT Trans. Built Environ. 2002, 61, 10. [Google Scholar]
- Chater, E.; Ghani, D.; Giri, F.; Haloua, M. Output feedback control of pantograph–catenary system with adaptive estimation of catenary parameters. J. Mod. Transp. 2015, 23, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Gostling, R.J.; Hobbs, A.E.W. The interaction of pantograph and overhead equipment: Practical applications of a new theoretical method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1983, 197, 61–69. [Google Scholar] [CrossRef]
- Judek, S.; Karwowski, K.; Mizan, M. Technical diagnostics and monitoring of current collection from traction overhead network. Pojazdy Szynowe 2011, 3, 76–85. [Google Scholar] [CrossRef]
- Schar, R. Active Control of the Pantograph-Catenary Interaction in a Finite Element Model. Master’s Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2013; pp. 1–88. [Google Scholar]
- Abbott, M.R. Numerical method for calculating the dynamic behaviour of a trolley wire overhead contact system for electric railways. Comput. J. 1970, 13, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Wilk, A.; Karwowski, K.; Judek, S.; Mizan, M. A new approach to determination of the two-mass model parameters of railway current collector. TTS Tech. Transp. Szyn. 2015, 10, 212–218. [Google Scholar]
- Wilk, A.; Karwowski, K.; Judek, S.; Mizan, M. Modelowanie i symulacja dynamiki ruchu trakcyjnego odbieraka prądu. Przegląd Elektrotechniczny 2015, 10, 139–140. [Google Scholar] [CrossRef]
- Pisano, A.; Usai, E. Contact force regulation in wire-actuated pantographs via variable structure control. In Proceedings of the 2007 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007. [Google Scholar]
- Ding, T.; Jing, Y.; Fan, Y.; Yang, Y.; Xiong, W. Tribology Behaviors of Carbon Strip/Copper Contact Wire of Pantograph/Centenary System Under Electric Current. DEStech Trans. Eng. Technol. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Ding, T.; Jing, Y.; Fan, Y.; Yang, Y.; Xiong, W. Friction and Wear Behaviors with Electric Current of Carbon Strip/Copper Contact Wire for Pantograph/Centenary System. DEStech Trans. Eng. Technol. Res. 2017. [Google Scholar] [CrossRef]
- Aboshi, M. Estimation method of contact line unevenness using dynamic simulation. IEEJ Trans. Ind. Appl. 2006, 124, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Wąkatroba, P.; Duda, S.; Gąkasiorek, D. Symulacje numeryczne zjawisk dynamicznych w układzie pantograf-sieć jezdna. Modelowanie Inżynierskie 2015, 23, 94–100. [Google Scholar]
- Wilk, A.; Karwowski, K.; Judek, S.; Mizan, M. Modelowanie współpracy odbieraka prądu z siecią trakcyjną. Przegląd Elektrotechniczny 2015, 10, 248–253. [Google Scholar]
- Rusu-Anghel, S.; Miklos, C.; Averseng, J. Control system for catenary—Pantograph dynamic interaction force. In Proceedings of the 2010 International Joint Conference on Computational Cybernetics and Technical Informatics, Timisoara, Romania, 27–29 May 2010. [Google Scholar]
- Mokrani, N.; Rachid, A. A robust control of contact force of pantograph-catenary for the high-speed train. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013. [Google Scholar]
- Piga-Carboni, A.; Pisano, A.; Usai, E. Robust control of the contact force of an asymmetric pantograph. WIT Trans. Built 2002, 61, 10. [Google Scholar] [CrossRef]
- Makino, T.; Yoshida, K.; Shinji, S.; Makino, K. Running test on current collector with contact force controller for high-speed railways. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 1997, 40, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, C.M.; Patel, M.D.; Tinsley, B.; Shabana, A.A. Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2016, 230, 307–328. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, C.G.; Lu, W.B.; Zhang, S. Preparation and Tribological Behavior of Carbon Fiber Reinforced Pantograph Slide Plate. Adv. Mater. Res. 2012, 430, 378–382. [Google Scholar]
- Rojek, A.; Majewski, W. Materiały nakładek ślizgowych pantografów. In Proceedings of the VI Lubuska Konferencja Naukowo-Techniczna—i-MITEL 2010, Gorzów, Poland, 21–23 April 2010; pp. 347–352. Available online: www.mitel.uz.zgora.pl/CD/2010/s347.pdf (accessed on 5 October 2021).
- Wang, G.; Chen, J.; Sun, J. Current Status and Future Trends of Research on Pantograph Slide. Mater. Rev. 2003, 17, 18–20. [Google Scholar]
- Lu, Q.; He, G.; Yang, Y.; Fan, K.; Zhao, X. Development of carbon contact strips and research progress in china. Electr. Drive Locomot. 2003, 12. Available online: en.cnki.com.cn (accessed on 11 October 2021).
- Kubo, S.; Kato, K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk. Tribol. Int. 1999, 32, 367–378. [Google Scholar] [CrossRef]
- Ding, T.; Chen, G.; Bu, J. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph–catenary systems. Wear 2011, 271, 1629–1636. [Google Scholar] [CrossRef]
- Manory, R. A novel electrical contact material with improved self-lubrication for railway current collectors. Wear 2001, 249, 626–636. [Google Scholar]
- Bruni, S.; Ambrosio, J.; Carnicero, A.; Cho, Y.H.; Finner, L.; Ikeda, M.; Kwon, S.Y.; Massat, J.P.; Stichel, S.; Tur, M.; et al. The results of the pantograph-catenary interaction benchmark. Veh. Syst. Dyn. 2015, 53, 412–435. [Google Scholar] [CrossRef]
- Liu, Z.; Ronnquist, A.; Navik, P.; Liu, Z. Contact wire irregularity stochastics and effect on high-speed railway pantograph-catenary interactions. IEEE Trans. Instrum. Meas. 2020, 69, 8196–8206. [Google Scholar]
- Zhang, W.; Zou, D.; Tan, M.; Zhou, N.; Li, R.; Mei, G. Review of pantograph and catenary interaction. Front. Mech. Eng. 2018, 13, 311–322. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Liu, Z.; Wang, R. A spatial coupling model to study dynamic performance of pantograph-catenary with vehicle-track excitation. Mech. Syst. Signal Process. 2021, 151, 107336. [Google Scholar] [CrossRef]
- Gajewski, J.; Vališ, D. Verification of the technical equipment degradation method using a hybrid reinforcement learning trees–artificial neural network system. Tribol. Int. 2021, 153, 106618. [Google Scholar] [CrossRef]
- Kuzhagaliyeva, N.; Thabet, A.; Singh, E.; Ghanem, B.; Sarathy, M. Using deep neural networks to diagnose engine pre-ignition. Proc. Combust. Inst. 2021, 38, 5915–5922. [Google Scholar] [CrossRef]
- Katsuba, Y.; Grigorieva, L. Application of Artificial Neural Networks in Vehicles’ Design Self-Diagnostic Systems for Safety Reasons. Transp. Res. Procedia 2017, 20, 283–287. [Google Scholar]
- Borecki, M.; Rychlik, A.; Vrublevskyi, O.; Olejnik, A.; Korwin-Pawlowski, M.L. Method of Non-Invasive determination of wheel rim technical condition using vibration measurement and artificial neural network. Measurement 2021, 185, 110050. [Google Scholar] [CrossRef]
- Khaleghi, S.; Karimi, D.; Beheshti, S.H.; Hosen, M.S.; Behi, H.; Berecibar, M.; Van Mierlo, B. Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network. Appl. Energy Part A 2021, 282, 116159. [Google Scholar] [CrossRef]
- Salini, C.; Madhavi, R.; Kaku, H.B.; Vatchala, S. Detection of critical diagnostic faults in automobiles using Convolutional Neural network architecture. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Wen, Y.; Rahman, M.F.; Xu, H.; Tseng, T.L.B. Recent advances and trends of predictive maintenance from data-driven machine prognostics perspective. Measurement 2022, 187, 110276. [Google Scholar] [CrossRef]
- Bhat, J.; Bhapkar, U.; Desai, M. Condition based predictive maintenance of worm gearbox using DR ferrography. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Giordano, D.; Giovergia, F.; Pastor, E.; La Macchia, A.; Cerquitelli, T.; Baralis, E.; Mellia, M.; Tricarico, D. Data-driven strategies for predictive maintenance: Lesson learned from an automotive use case. Comput. Ind. 2022, 134, 103554. [Google Scholar] [CrossRef]
- Cao, Q.; Zanni-Merk, C.; Samet, A.; Reich, C.; de Beuvron, F.B.; Beckmann, A.; Giannetti, C. KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0. Robot. Comput.-Integr. Manuf. 2022, 74, 102281. [Google Scholar] [CrossRef]
- Kuźnar, M.; Lorenc, A.; Kaczor, G. Pantograph Sliding Strips Failure—Reliability Assessment and Damage Reduction Method Based on Decision Tree Model. Materials 2021, 14, 5743. [Google Scholar] [CrossRef] [PubMed]
Type of Input Data | Input Data Structure Number | |||
---|---|---|---|---|
1 | 2 | 3 | ||
The number of input data sin | 14 | 12 | 10 | |
1 | Review number | X | X | X |
2 | New measuring cycle | X | X | X |
3 | The number of days since the exchange | X | X | X |
4 | Quarter of the year | X | X | X |
5 | Average temperature in the month [°C] | X | X | |
6 | Average wind speed for the month [km/h] | X | X | |
7 | Total rainfall for the month [mm] | X | X | |
8 | Pantograph type | X | X | X |
9 | Front/rear pantograph | X | X | X |
10 | The difference in thickness of the strip N1 between inspections | X | X | X |
11 | The difference in thickness of the strip N2 between inspections | X | X | X |
12 | Sliding strip thickness N1 | X | ||
13 | Sliding strip thickness N2 | X | ||
14 | Reason for replacement during the previous measurement | X | X | |
15 | Earlier technical condition | X | ||
16 | Reason for replacement | X |
The Type of Output | The Output Data Structure Number | ||
---|---|---|---|
1 | 2 | ||
The number of outputs sout | 3 vector T | 1 value z3(t) | |
1 | First technical condition—able to further use (S1 = 0 lub S1 = 1) | X | |
2 | Second technical condition—the limited ability of further use, it will be necessary to replace the sliding strip for the next inspection (S2 = 0 or S2 = 1) | X | |
3 | Third technical condition—not able to further use—it is necessary to replace the sliding strip/pantograph (S3 = 0 lub S3 = 1) | X | |
4 | Technical condition z3(t) specified as value: z3(t) = 1 First technical condition z3(t) = 2 Second technical condition z3(t) = 3 Third technical condition | X |
Model No. | Type of Learning Method | Input/Predictors Regards to Table 1 | Output/Response Regards to Table 2 | Model Parameters |
---|---|---|---|---|
1 | (1) ANN F-T-Lm | 1 | 1 | Number of hidden layers: 5 (14-14-14-14-14-3) |
2 | (1) ANN F-T-Lm | 2 | 1 | Number of hidden layers: 5 (12-12-12-12-12-3) |
3 | (1) ANN F-T-Lm | 2 | 1 | Number of hidden layers: 5 (12-12-12-12-12-3) |
4 | (2) ANN F-TP-Lm | 2 | 1 | Number of hidden layers: 1 (12-3) |
5 | (3) ANN F-TP-Lm | 2 | 1 | Number of hidden layers: 1 (6-3) |
6 | (2) ANN F-TP-Lm | 3 | 1 | Number of hidden layers: 1 (10-3) |
7 | (3) ANN F-TP-Br | 3 | 1 | Number of hidden layers: 1 (10-3) |
8 | (4) ANN F-TP-Lm/Br | 3 | 1 | Number of hidden layers: 1 (10-3) |
9 | (5) ANN Ft-T-Br | 3 | 1 | Number of hidden layers: 1 (10-3) |
10 | (5) ANN Ft-T-Br | 3 | 1 | Number of hidden layers: 1 (10-3) |
11 | (6) ANN Ft-T-C | 3 | 2 | Number of hidden layers: 1 (10-3) |
12 | (2) ANN F-TP-Lm | 3 | 2 | Number of hidden layers: 1 (10-3) |
No. | Name | Type of Model/Neural Network | Properties | |
---|---|---|---|---|
1 | ANN F-T-Lm | Feed forward artificial neural network with backpropagation | Activation function: TANSIG | Learning algorithm: TRAINLM |
2 | ANN F-TP-Lm | Feed forward artificial neural network with backpropagation | Activation function: TANSIG/PURELIN | Learning algorithm: TRAINLM |
3 | ANN F-TP-Br | Feed forward artificial neural network with backpropagation | Activation function: TANSIG/PURELIN | Learning algorithm: TRAINBR |
4 | ANN F-TP-Lm/Br | Feed forward artificial neural network with backpropagation | Activation function: TANSIG/PURELIN | Learning algorithm: TRAINLM/TRAINBR |
5 | ANN Ft-T-Br | Feed forward artificial neural network with backpropagation distributed time-delay | Activation function: TANSIG | Learning algorithm: TRAINBR |
6 | ANN Ft-T-C | Feed forward artificial neural network with backpropagation distributed time-delay | Activation function: TANSIG | Learning algorithm: TRAINCGB |
Model No. | Method Type (acc. to Table 4) | Input (acc. to Table 1) | Output (acc. to Table 2) | Training | Simulation | ||
---|---|---|---|---|---|---|---|
MSE | R | The Correctness of the Classification of All Technical Conditions | The Correctness of Classification of the Second Condition S2 | ||||
1 | (1) ANN F-T-Lm | 1 | 1 | 0.12497 (A) 0.12485 (B) | 0.75943 0.64552 | 59.8 54.7 | 4.3 20.5 |
2 | (1) ANN F-T-Lm | 2 | 1 | 0.13384 | 0.67901 | 41.2 | 31.9 |
3 | (1) ANN F-T-Lm | 2 | 1 | 0.11970 | 0.71918 | 48.1 | 10.6 |
4 | (2) ANN F-TP-Lm | 2 | 1 | 0.11913 | 0.72838 | 53.2 | 17.0 |
5 | (2) ANN F-TP-Lm | 2 | 1 | 0.11669 | 0.71501 | 49.3 | 12.8 |
6 | (2) ANN F-TP-Lm | 3 | 1 | 0.069108 | 0.84538 | 76.5 | 38.3 |
7 | (3) ANN F-TP-Br | 3 | 1 | 0.043195 | 0.87944 | 76.2 | 38.3 |
8 | (4) ANN F-TP-Lm/Br | 3 | 1 | 0.038862 | 0.88206 | 78.1 | 42.6 |
9 | (5) ANN Ft-T-Br | 3 | 1 | 0.014731 | 0.9222 | 78.6 | 61.7 |
10 | (5) ANN Ft-T-Br | 3 | 1 | 0.020364 | 0.92088 | 82.0 | 61.7 |
11 | (6) ANN Ft-T-C | 3 | 2 | 0.064105 | 0.8938 | 81.5 | 80.9 |
12 | (2) ANN F-TP-Lm | 3 | 2 | 0.15974 | 0.90966 | 82.5 | 85.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźnar, M.; Lorenc, A. A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks. Materials 2022, 15, 98. https://doi.org/10.3390/ma15010098
Kuźnar M, Lorenc A. A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks. Materials. 2022; 15(1):98. https://doi.org/10.3390/ma15010098
Chicago/Turabian StyleKuźnar, Małgorzata, and Augustyn Lorenc. 2022. "A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks" Materials 15, no. 1: 98. https://doi.org/10.3390/ma15010098
APA StyleKuźnar, M., & Lorenc, A. (2022). A Method of Predicting Wear and Damage of Pantograph Sliding Strips Based on Artificial Neural Networks. Materials, 15(1), 98. https://doi.org/10.3390/ma15010098