Effect of Annealing Process on the Microstructure and Texture of Cold-Rolled High-Purity Al-0.5%Cu Plates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure Evolution
3.2. Hardness Properties
3.3. Texture Evolution
4. Discussion
5. Conclusions
- (1)
- The recrystallization microstructure of the alloy was greatly influenced by heating rate. The RH samples were comprised of equiaxed grains with finer size, while the SH samples were composed of coarse grains with higher length-width ratio;
- (2)
- Hardness of the alloy in process of recovery and recrystallization was affected by annealing processes. The RH samples were faster than SH samples at decreasing hardness and the time for completing recrystallization of RH samples was shorter;
- (3)
- The recrystallization texture of the alloy was also significantly affected by applied annealing process. Higher temperatures and holding time promoted texture transformation and made textures more random. After completing recrystallization, the distribution of textures did not change with a change in holding time. Different heating rate affected the strength of texture components, samples in RH had lower texture strength and more random texture distribution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rioja, R.J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications. Mater. Sci. Eng. A 1998, 257, 100–107. [Google Scholar] [CrossRef]
- Wen, F.; Chen, J.; Zhong, S.; Zhou, Z.; Han, S.; Wei, H.; Zhang, Y.; Li, W.; Guan, R. Effect of crystal orientations and precipitates on the corrosion behavior of the Al-Cu alloy using single crystals. J. Alloys Compd. 2022, 890, 161858. [Google Scholar] [CrossRef]
- Yang, H.; Gao, T.; Zhang, H.; Nie, J.; Liu, X. Enhanced age-hardening behavior in Al–Cu alloys induced by in-situ synthesized TiC nanoparticles. J. Mater. Sci. Technol. 2019, 35, 374–382. [Google Scholar] [CrossRef]
- Zhang, Q.; Deng, H.; Yu, J.; Tao, J.; Sun, L.; Yang, P.; Chu, J. Grain growth enhancing through preheating treatment of a sputtered stacked metallic precursor for Cu(In, Al)Se2 thin film solar cells application. Mater. Sci. Eng. B 2019, 242, 31–36. [Google Scholar] [CrossRef]
- Kohlhauser, B.; Riedl, H.; Koller, C.M.; Paneta, V.; Kolozsvári, S.; Mayrhofer, P.H. How microalloying of the Al target can improve process and film characteristics of sputtered alumina. Surf. Coat. Technol. 2020, 393, 125762. [Google Scholar] [CrossRef]
- Blažek, J.; Musil, J.; Stupka, P.; Čerstvý, R.; Houška, J. Properties of nanocrystalline Al–Cu–O films reactively sputtered by DC pulse dual magnetron. Appl. Surf. Sci. 2011, 258, 1762–1767. [Google Scholar] [CrossRef]
- Gazizov, M.; Marioara, C.D.; Friis, J.; Wenner, S.; Holmestad, R.; Kaibyshev, R. Precipitation behavior in an Al–Cu–Mg–Si alloy during ageing. Mater. Sci. Eng. A 2019, 767, 138369. [Google Scholar] [CrossRef]
- Krasnikov, V.S.; Gazizov, M.R.; Mayer, A.E.; Bezborodova, P.A.; Pogorelko, V.V.; Kaibyshev, R.O. Prediction of the strength of aged Al-Cu alloys with non-hybrid and hybrid {100}Al plates. Comput. Mater. Sci. 2022, 207, 111331. [Google Scholar] [CrossRef]
- Gazizov, M.R.; Boev, A.O.; Marioara, C.D.; Andersen, S.J.; Holmestad, R.; Kaibyshev, R.O.; Aksyonov, D.A.; Krasnikov, V.S. The unique hybrid precipitate in a peak-aged Al-Cu-Mg-Ag alloy. Scr. Mater. 2021, 194, 113669. [Google Scholar] [CrossRef]
- Burger, G.B.; Gupta, A.K.; Jeffrey, P.W.; Lloyd, D.J. Microstructural control of aluminum sheet used in automotive applications. Mater. Charact. 1995, 35, 23–39. [Google Scholar] [CrossRef]
- Primig, S.; Leitner, H.; Knabl, W.; Lorich, A.; Clemens, H.; Stickler, R. Influence of the heating rate on the recrystallization behavior of molybdenum. Mater. Sci. Eng. A 2012, 535, 316–324. [Google Scholar] [CrossRef]
- Dalai, B.; Moretti, M.A.; Åkerström, P.; Arvieu, C.; Jacquin, D.; Lindgren, L.-E. Mechanical behavior and microstructure evolution during deformation of AA7075-T651. Mater. Sci. Eng. A 2021, 822, 141615. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Martorano, M.A.; de Lima, N.B.; Padilha, A.F. Effects of recovery and recrystallization on microstructure and texture during annealing of a cold deformed superconducting Nb-50 (wt.)%Ti alloy. J. Alloys Compd. 2021, 887, 161334. [Google Scholar] [CrossRef]
- Ciucani, U.M.; Thum, A.; Devos, C.; Pantleon, W. Recovery and recrystallization kinetics of differently rolled, thin tungsten plates in the temperature range from 1325 C to 1400 °C. Nucl. Mater. Energy 2019, 20, 100701. [Google Scholar] [CrossRef]
- Doherty, R.D.; Hughes, D.A.; Humphreys, F.J.; Jonas, J.J.; Jensen, D.J.; Kassner, M.E.; King, W.E.; McNelley, T.R.; McQueen, H.J.; Rollett, A.D. Current issues in recrystallization: A review. Mater. Sci. Eng. A 1997, 238, 219–274. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xi, Y.; Zan, X.; Luo, L.; Wu, Y. Microstructure and annealing behavior of three rolled pure tungsten plates with different thickness reduction. Fusion Eng. Des. 2021, 172, 112863. [Google Scholar] [CrossRef]
- Fang, H.; Liu, H.; Yan, Y.; Luo, X.; Xu, X.; Chu, X.; Lu, Y.; Yu, K.; Wang, D. Evolution of texture, microstructure, tensile strength and corrosion properties of annealed Al–Mg–Sc–Zr alloys. Mater. Sci. Eng. A 2021, 804, 140682. [Google Scholar] [CrossRef]
- Shuai, L.F.; Huang, T.L.; Wu, G.L.; Winther, G.; Huang, X.; Mishin, O.V. Unusual through-thickness variations of microstructure and texture in heavily rolled and annealed Al–0.3%Cu. Mater. Charact. 2020, 162, 110173. [Google Scholar] [CrossRef]
- Engler, O. Influence of the Initial Grain Size on the Rolling and Recrystallization Textures in the Alloy Al-1.8% Cu. Textures Microstruct. 1995, 23, 61–86. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Li, W.; Sun, Z.; Zhou, Z.; Xie, C.; Liao, Z.; Yi, D. Insights of texture and microstructure evolution in the short time annealing of Al-Cu-Mg alloy at large temperature range. J. Alloys Compd. 2021, 871, 159613. [Google Scholar] [CrossRef]
- Liu, W.C.; Morris, J.G. Evolution of recrystallization and recrystallization texture in continuous-cast AA 3015 aluminum alloy. Metall. Mater. Trans. A 2005, 36, 2829–2848. [Google Scholar] [CrossRef]
- Krishnarao, R.V.; Alam, M.Z.; Kumar Das, D.; Bhanu Prasad, V.V. Synthesis of ZrB2–SiC composite powder in air furnace. Ceram. Int. 2014, 40, 15647–15653. [Google Scholar] [CrossRef]
- Tang, H.; Bai, L.; Wang, M.; Zhang, Y.; Li, M.; Wang, M.; Kong, L.; Xu, N.; Zhang, Y.; Rao, P. Fast synthesis of thin high silica SSZ-13 zeolite membrane using oil-bath heating. Int. J. Hydrogen Energy 2019, 44, 23107–23119. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, G.H.; Wang, W.; Jiang, X. Evaluation and optimization on the formability of an AZ31B Mg alloy during warm incremental sheet forming assisted with oil bath heating. Measurement 2020, 157, 107673. [Google Scholar] [CrossRef]
- Nmc, A.; Psp, A.; Mr, A.; Lv, A.; Pp, B.; Gs, C. Role of stacking fault energy (SFE) on the high strain rate deformation of cold sprayed Cu and Cu-Al alloy coatings. Mater. Sci. Eng. A 2021, 814, 141242. [Google Scholar]
- Asano, M.; Yuasa, M.; Miyamoto, H. Effects of Stacking Fault Energy and Solute Atoms on Microstructural Evolution of Cu, Ag and Cu-Al Alloys Processed by Equal Channel Angular Pressing. Mater. Sci. Eng. A 2020, 803, 140716. [Google Scholar] [CrossRef]
- Bhowmik, A.; Kumar Khandelwal, A. Mechanical behaviour of annealed Al 5052 at different temperatures. Mater. Today Proc. 2021, 46, 6091–6096. [Google Scholar] [CrossRef]
- Liu, W.C.; Yuan, H.; Huang, M.J.; Cai, D.Y.; Yang, Q.X. Quantifying the recrystallization of cold rolled AA 3015 aluminum alloy by X-ray diffraction. Mater. Sci. Eng. A 2009, 524, 168–175. [Google Scholar] [CrossRef]
- Wang, X.; Guo, M.; Cao, L.; Luo, J.; Zhang, J.; Zhuang, L. Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment. Mater. Sci. Eng. A 2015, 621, 8–17. [Google Scholar] [CrossRef]
- Birol, Y. Recrystallization of a supersaturated Al–Mn alloy. Scr. Mater. 2008, 59, 611–614. [Google Scholar] [CrossRef]
- Humphreys, F.J.; Ardakani, M.G. Grain boundary migration and Zener pinning in particle-containing copper crystals. Acta Mater. 1996, 44, 2717–2727. [Google Scholar] [CrossRef]
Texture Type | Miller Index | Euler Angle (φ1, Φ, φ2) | ||
---|---|---|---|---|
Cube | {001} <100> | 0 | 0 | 0 |
Cube-RD | {013} <100> | 0 | 19 | 0 |
Cube-ND | {001} <310> | 19 | 0 | 0 |
Goss | {011} <100> | 0 | 45 | 0 |
P | {011} <122> | 70 | 45 | 0 |
Brass | {011} <211> | 35 | 45 | 0 |
Copper | {112} <111> | 90 | 35 | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, K.; Chen, J.; Yang, D.; Zhang, Z. Effect of Annealing Process on the Microstructure and Texture of Cold-Rolled High-Purity Al-0.5%Cu Plates. Materials 2022, 15, 3489. https://doi.org/10.3390/ma15103489
Yuan K, Chen J, Yang D, Zhang Z. Effect of Annealing Process on the Microstructure and Texture of Cold-Rolled High-Purity Al-0.5%Cu Plates. Materials. 2022; 15(10):3489. https://doi.org/10.3390/ma15103489
Chicago/Turabian StyleYuan, Kuiwen, Jiaxin Chen, Dan Yang, and Zhiqing Zhang. 2022. "Effect of Annealing Process on the Microstructure and Texture of Cold-Rolled High-Purity Al-0.5%Cu Plates" Materials 15, no. 10: 3489. https://doi.org/10.3390/ma15103489
APA StyleYuan, K., Chen, J., Yang, D., & Zhang, Z. (2022). Effect of Annealing Process on the Microstructure and Texture of Cold-Rolled High-Purity Al-0.5%Cu Plates. Materials, 15(10), 3489. https://doi.org/10.3390/ma15103489