Hollow Hemispherical Lithium Iron Silicate Synthesized by an Ascorbic Acid-Assisted Hydrothermal Method as a Cathode Material for Li Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
2.3. Electrodes Fabrication and Electrochemical Tests
3. Results and Discussion
3.1. Structural Analysis
3.2. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lecce, D.D.; Verrellia, R.; Hassoun, J. Lithium-ion batteries for sustainable energy storage: Recent advances towards new cell configurations. Green Chem. 2017, 19, 3442–3467. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Y.; Yu, Y.; Ren, Y.; Sun, C.; Liu, Y.; Xu, J.; Liu, C.; Yang, Z.; Lu, W.; et al. Approaching theoretical specific capacity of iron-rich lithium iron silicate using graphene-incorporation and fluorine-doping. J. Mater. Chem. A 2022, 10, 4006–4014. [Google Scholar] [CrossRef]
- Sasaki, H.; Nemoto, A.; Moriya, M.; Miyahara, M.; Hokazono, M.; Katayama, S.; Akimoto, Y.; Nakajima, A.; Hirano, S. Destruction behavior of carbon hybridized Li2MnSiO4 and Li2FeSiO4 nanoparticles for cathode materials. Ceram. Int. 2015, 41, S680–S685. [Google Scholar] [CrossRef]
- Muraliganth, T.; Stroukoff, K.R.; Manthiram, A. Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem. Mater. 2010, 22, 5754–5761. [Google Scholar] [CrossRef]
- Li, Y.X.; Gong, Z.L.; Yang, Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J. Power Sources 2007, 174, 528–532. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.L.; Xue, T.T.; Zhang, D.Y.; Yan, Y.X.; Li, Z.M. Hydrothermal-assisted synthesis of Li2FeSiO4/C composites as cathode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 2020, 15, 587–598. [Google Scholar] [CrossRef]
- Chen, Z.; Qiu, S.; Cao, Y.; Qian, J.; Ai, X.; Xie, K.; Hong, X.; Yang, H. Hierarchical porous Li2FeSiO4/C composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. J. Mater. Chem. A 2013, 1, 4988–4992. [Google Scholar] [CrossRef]
- Lu, X.; Chiu, H.C.; Arthur, Z.; Zhou, J.G.; Wang, J.; Chen, N.; Jiang, D.T.; Zaghib, K.; Demopoulos, G.P. Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: Antisite-induced phase transition and lattice oxygen participation. J. Power Sources 2016, 329, 355–363. [Google Scholar] [CrossRef]
- Masese, T.; Tassel, C.; Orikasa, Y.; Koyama, Y.; Arai, H.; Hayashi, N.; Kim, J.; Mori, T.; Yamamoto, K.; Kobayashi, Y.; et al. Crystal structural changes and charge compensation mechanism during two lithium extraction/insertion between Li2FeSiO4 and FeSiO4. J. Phys. Chem. C 2015, 119, 10206–10211. [Google Scholar] [CrossRef]
- Liu, J.Y.; Li, Y.H.; Yang, S.; Ai, J.J.; Lai, C.Y.; Xu, Q.J. Improved cycling performance and rate stability of ITO-compounded Li2MnSiO4 for lithium-ion batteries. RSC Adv. 2018, 8, 9795–9801. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cheng, X.; Zhang, Y. Achieving high capacity by vanadium substitution into Li2FeSiO4. J. Electrochem. Soc. 2012, 159, A69–A74. [Google Scholar] [CrossRef]
- Kumar, A.; Jayakumar, O.D.; Jagannath; Bashiri, P.; Nazri, G.A.; Naik, V.M.; Naik, R. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries. Dalton Trans. 2017, 46, 12908–12915. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Li, M.; Tian, X.; Liu, P.; Yi, Y.; Yang, B. Calcium cation enhanced cathode/electrolyte interface property of Li2FeSiO4/C cathode for lithium-ion batteries with long-cycling life. Chem. Phys. 2018, 503, 1–13. [Google Scholar] [CrossRef]
- Qu, L.; Li, M.; Bian, L.; Du, Q.; Luo, M.; Yang, B.; Yang, L.; Fang, S.; Liu, Y. A strontium-doped Li2FeSiO4/C cathode with enhanced performance for the lithium-ion battery. J. Solid State Electrochem. 2017, 21, 3659–3673. [Google Scholar] [CrossRef]
- Lee, J.J.; Dinh, H.C.; Mho, S.I.; Yeo, I.H.; Cho, W.I.; Kim, D.W. Morphology-controlled solvothermal synthesis of Li2FeSiO4 nanoparticles for Li-ion battery cathodes. Mater. Lett. 2015, 160, 507–510. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, W.; Zhang, A.; Liu, H.; Ma, Z. Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 12982–12990. [Google Scholar] [CrossRef]
- Yi, L.L.; Wang, G.; Bai, Y.S.; Liu, M.H.; Wang, X.; Liu, M.; Wang, X.Y. The effects of morphology and size on performances of Li2FeSiO4/C cathode materials. J. Alloys Compd. 2017, 721, 683–690. [Google Scholar] [CrossRef]
- Vajeeston, P. Ionic conductivity enhancement by particle size reduction in Li2FeSiO4. Mater. Lett. 2018, 218, 313–316. [Google Scholar] [CrossRef]
- Cui, J.; Qing, C.; Zhang, Q.; Su, C.; Wang, X.; Yang, B.; Huang, X. Effect of the particle size on the electrochemical performance of nano-Li2FeSiO4/C composites. Ionics 2014, 20, 23–28. [Google Scholar] [CrossRef]
- Wang, K.; Ren, W.J.; Yang, J.L.; Tan, R.; Liu, Y.D.; Pan, F. Depolarization effects of Li2FeSiO4 nanocrystals wrapped in different conductive carbon networks as cathodes for high performance lithium-ion batteries. RSC Adv. 2016, 6, 47723–47729. [Google Scholar] [CrossRef]
- Thayumanasundaram, S.; Rangasamy, V.S.; Seo, J.W.; Locquet, J.-P. A combined approach: Polyol synthesis of nanocrystalline Li2FeSiO4, doping multi-walled carbon nanotubes, and ionic liquid electrolyte to enhance cathode performance in Li-ion batteries. Electrochim. Acta 2017, 258, 1044–1052. [Google Scholar] [CrossRef]
- Huang, B.; Zheng, X.; Lu, M. Synthesis and electrochemical properties of carbon nano-tubes modified spherical Li2FeSiO4 cathode material for lithium-ion batteries. J. Alloys Compd. 2012, 525, 110–113. [Google Scholar] [CrossRef]
- Wang, W.C.; Liang, H.C.; Zhang, L.; Savilov, S.V.; Ni, J.F.; Li, L. Carbon nanotube directed three-dimensional porous Li2FeSiO4 composite for lithium batteries. Nano Res. 2017, 10, 229–237. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.Q.; Wang, L.P.; Wu, Y.; Zhao, H.Y.; Chen, B.; Xiong, W.Q. Fabrication and characterization of carbon-coated Li2FeSiO4 nanoparticles reinforced by carbon nanotubes as high performance cathode materials for lithium-ion batteries. Electrochim. Acta 2015, 168, 8–15. [Google Scholar] [CrossRef]
- Singh, S.; Mitra, S. Improved electrochemical activity of nanostructured Li2FeSiO4/MWCNTs composite cathode. Electrochim. Acta 2014, 123, 378–386. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Wang, N.; Wu, C.; Ding, Y.; Guan, L. In situ generation of Li2FeSiO4 coating on MWNT as a high rate cathode material for lithium ion batteries. J. Mater. Chem. 2012, 22, 18797–18800. [Google Scholar] [CrossRef]
- Ni, J.F.; Jiang, Y.; Bi, X.X.; Li, L.; Lu, J. Lithium iron orthosilicate cathode: Progress and perspectives. ACS Energy Lett. 2017, 2, 1771–1781. [Google Scholar] [CrossRef]
- Liang, J.; Kou, H.; Ding, S. Complex hollow bowl-like nanostructures: Synthesis, application, and perspective. Adv. Funct. Mater. 2021, 31, 2007801. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, J.; Huang, H.; Lin, T.; Luo, B.; Wang, L. Hollow structured cathode materials for rechargeable batteries. Sci. Bull. 2020, 65, 496–512. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.Y.; Zhang, Y.; Wei, G.H.; Zhang, W.S.; Yan, X.H.; Xia, G.F.; Wu, A.M.; Ke, C.C.; Zhang, J.L. Li2FeSiO4/C hollow nanospheres as cathode materials for lithium-ion batteries. Nano Res. 2019, 12, 357–363. [Google Scholar] [CrossRef]
- Qu, L.; Fang, S.; Yang, L.; Hirano, S.-i. Li2FeSiO4/C cathode material synthesized by template-assisted sol-gel process with Fe2O3 microsphere. J. Power Sources 2012, 217, 243–247. [Google Scholar] [CrossRef]
- Ren, B.; Xu, Y.; Yan, Y.; Yang, R.; Wang, J. Synthesis and electrochemical performance of spherical-like Li2FeSiO4/C/SP cathode material for lithium-ion batteries. J. Alloy Compd. 2015, 633, 456–462. [Google Scholar] [CrossRef]
- Huang, X.; You, Y.; Ren, Y.; Wang, H.; Chen, Y.; Ding, X.; Liu, B.; Zhou, S.; Chu, F. Spray drying-assisted synthesis of hollow spherical Li2FeSiO4/C particles with high performance for Li-ion batteries. Solid State Ion. 2015, 278, 203–208. [Google Scholar] [CrossRef]
- Zeng, Y.; Chiu, H.-C.; Rasool, M.; Brodusch, N.; Gauvin, R.; Jiang, D.-T.; Ryan, D.H.; Zaghib, K.; Demopoulos, G.P. Hydrothermal crystallization of Pmn21 Li2FeSiO4 hollow mesocrystals for Li-ion cathode application. Chem. Eng. J. 2019, 359, 1592–1602. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.-L.; Yang, X.-L.; Huang, Y.-H.; Sun, H.-B.; Ni, S.-B.; Tao, H.-C. Synthesis and electrochemical performance of Li2FeSiO4/C cathode material using ascorbic acid as an additive. J. Solid State Electrochem. 2015, 19, 415–421. [Google Scholar] [CrossRef]
- Yang, J.; Hu, L.; Zheng, J.; He, D.; Tian, L.; Mu, S.; Pan, F. Li2FeSiO4 nanorods bonded with graphene for high performance batteries. J. Mater. Chem. A 2015, 3, 9601–9608. [Google Scholar] [CrossRef]
- Sirisopanaporn, C.; Masquelier, C.; Bruce, P.G.; Armstrong, A.R.; Dominko, R. Dependence of Li2FeSiO4 electrochemistry on structure. J. Am. Chem. Soc. 2011, 133, 1263–1265. [Google Scholar] [CrossRef]
- Qin, Y.Q.; Ji, X.H.; Jing, J.; Liu, H.; Wu, H.L.; Yang, W.S. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloid Surf. A 2010, 372, 172–176. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, W.; Wang, C.; Zhang, A.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. Hydrothermal synthesis and electrochemical performance of nanoparticle Li2FeSiO4/C cathode materials for lithium ion batteries. Electrochim. Acta 2015, 167, 340–347. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, H.; Yang, J.; Liu, J.; Mao, H.; Qian, Y. Synthesis of novel morphologies of Li2FeSiO4/C micro/nano composites by a facile hydrothermal method. RSC Adv. 2014, 4, 39889–39893. [Google Scholar] [CrossRef]
- Gao, H.; Hu, Z.; Zhang, K.; Cheng, F.; Tao, Z.; Chen, J. Hydrothermal synthesis of spindle-like Li2FeSiO4-C composite as cathode materials for lithium-ion batteries. J. Energy Chem. 2014, 23, 274–281. [Google Scholar] [CrossRef]
- Lv, D.; Wen, W.; Huang, X.; Bai, J.; Mi, J.; Wu, S.; Yang, Y. A novel Li2FeSiO4/C composite: Synthesis, characterization and high storage capacity. J. Mater. Chem. 2011, 21, 9506–9512. [Google Scholar] [CrossRef] [Green Version]
- Kojima, A.; Kojima, T.; Tabuchi, M.; Sakai, T. Crystal structure and electrochemical performance of a new lithium trivalent iron silicate. J. Electrochem. Soc. 2012, 159, A725–A729. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wu, Y.; Yang, F.; Wang, J.; Zhou, J.C. An active-oxygen-scavenging oriented cathode-electrolyte-interphase for long-life lithium-rich cathode materials. Small 2022, 18, 2106072. [Google Scholar] [CrossRef]
- Guerrini, N.; Jin, L.; Lozano, J.G.; Luo, K.; Sobkowiak, A.; Tsuruta, K.; Massel, F.; Duda, L.-C.; Roberts, M.R.; Bruce, P.G. Charging mechanism of Li2MnO3. Chem. Mater. 2020, 32, 3733–3740. [Google Scholar] [CrossRef]
- Luo, M.Z.; Zheng, S.Y.; Wu, J.; Zhou, K.; Zuo, W.H.; Feng, M.; He, H.J.; Liu, R.; Zhu, J.P.; Zhao, G.; et al. Identifying the anionic redox activity in cation-disordered Li1.25Nb0.25Fe0.50O2/C oxide cathodes for Li-ion batteries. J. Mater. Chem. A 2020, 8, 5115–5127. [Google Scholar] [CrossRef]
- Fujita, Y.; Iwase, H.; Shida, K.; Liao, J.S.; Fukui, T.; Matsuda, M. Synthesis of high-performance Li2FeSiO4/C composite powder by spray-freezing/freeze-drying a solution with two carbon sources. J. Power Sources 2017, 361, 115–121. [Google Scholar] [CrossRef]
- Du, X.; Zhao, H.; Lu, Y.; Gao, C.; Xia, Q.; Zhang, Z. Electrochemical properties of nanostructured Li2FeSiO4/C synthesized by a simple co-precipitation method. Electrochim. Acta 2016, 188, 744–751. [Google Scholar] [CrossRef]
- Nyten, A.; Abouimrane, A.; Armand, M.; Gustafsson, T.; Thomas, J.O. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 2005, 7, 156–160. [Google Scholar] [CrossRef]
- Lv, D.; Bai, J.; Zhang, P.; Wu, S.; Li, Y.; Wen, W.; Jiang, Z.; Mi, J.; Zhu, Z.; Yang, Y. Understanding the high capacity of Li2FeSiO4: In situ XRD/XANES study combined with first-principles calculations. Chem. Mater. 2013, 25, 2014–2020. [Google Scholar] [CrossRef]
- Qu, L.; Liu, Y.; Fang, S.; Yang, L.; Hirano, S.-i. Li2FeSiO4 coated by sorbitanlaurat-derived carbon as cathode of high-performance lithium-ion battery. Electrochim. Acta 2015, 163, 123–131. [Google Scholar] [CrossRef]
- Singh, S.; Raj, A.K.; Sen, R.; Johari, P.; Mitra, S. Impact of Cl doping on electrochemical performance in orthosilicate (Li2FeSiO4): A density functional theory supported experimental approach. ACS Appl. Mater. Interfaces 2017, 9, 26885–26896. [Google Scholar] [CrossRef] [PubMed]
- Li, D.L.; Zhang, W.; Sun, R.; Yong, H.T.H.; Chen, G.Q.; Fan, X.Y.; Gou, L.; Mao, Y.Y.; Zhao, K.; Tian, M. Soft-template construction of three-dimensionally ordered inverse opal structure from Li2FeSiO4/C composite nanofibers for high-rate lithium-ion batteries. Nanoscale 2016, 8, 12202–12214. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, Y.; Cheng, X.; Gong, C. Hollow Hemispherical Lithium Iron Silicate Synthesized by an Ascorbic Acid-Assisted Hydrothermal Method as a Cathode Material for Li Ion Batteries. Materials 2022, 15, 3545. https://doi.org/10.3390/ma15103545
Li H, Li Y, Cheng X, Gong C. Hollow Hemispherical Lithium Iron Silicate Synthesized by an Ascorbic Acid-Assisted Hydrothermal Method as a Cathode Material for Li Ion Batteries. Materials. 2022; 15(10):3545. https://doi.org/10.3390/ma15103545
Chicago/Turabian StyleLi, Huaifu, Yunsong Li, Xuan Cheng, and Chaoyang Gong. 2022. "Hollow Hemispherical Lithium Iron Silicate Synthesized by an Ascorbic Acid-Assisted Hydrothermal Method as a Cathode Material for Li Ion Batteries" Materials 15, no. 10: 3545. https://doi.org/10.3390/ma15103545
APA StyleLi, H., Li, Y., Cheng, X., & Gong, C. (2022). Hollow Hemispherical Lithium Iron Silicate Synthesized by an Ascorbic Acid-Assisted Hydrothermal Method as a Cathode Material for Li Ion Batteries. Materials, 15(10), 3545. https://doi.org/10.3390/ma15103545