Facile Synthesis with TiO2 Xerogel and Urea Enhanced Aniline Aerofloat Degradation Performance of Direct Z-Scheme Heterojunction TiO2/g-C3N4 Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Photocatalysts
2.2.1. Synthesis of TiO2 Xerogel
2.2.2. Synthesis of TiO2/g-C3N4
2.3. Characterization
2.4. Photocatalytic Degradation and Analysis
3. Results and Discussion
3.1. Morphology Analysis
3.2. XRD Analysis
3.3. UV-Vis DRS Analysis
3.4. SBET and Porosity Analysis
3.5. Photodegradation Experiment
3.6. XPS Analysis
3.7. Electrochemical Analysis
3.8. Mechanism of Composite
3.8.1. Reactive Active Species of Photocatalyst
3.8.2. Mechanism Conjecture of Photodegradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, M.F. Research on Key Technology in the Beneficiation of Sn-Bearing Refractory Lead-zine Mine in Southeast Yunnan. Ph.D. Thesis, Central South University, Changsha, China, 2012. [Google Scholar]
- Xiang, L.; Xiao, T.; Mo, C.-H.; Zhao, H.M.; Li, Y.W.; Li, H.; Cai, Q.Y.; Zhou, D.M.; Wong, M.H. Sorption kinetics, isotherms, and mechanism of aniline aerofloat to agricultural soils with various physicochemical properties. Ecotoxicol. Environ. Saf. 2018, 154, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Ma, Y.; Lei, B.; Li, G.; Lin, X. Decomposition of refractory aniline aerofloat collector in aqueous solution by an ozone/vacuum-UV (O3/VUV) process. Environ. Technol. 2021, 42, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Wang, L.; Li, G.; Hou, Z.; Ma, Y. Homogenous catalytic ozonation of aniline aerofloat collector by coexisted transition metallic ions in flotation wastewaters. J. Environ. Chem. Eng. 2020, 8, 103714. [Google Scholar] [CrossRef]
- Lin, W.; Tian, J.; Ren, J.; Xu, P.T.; Dai, Y.K.; Sun, S.Y.; Wu, C. Oxidation of aniline aerofloat in flotation wastewater by sodium hypochlorite solution. Environ. Sci. Pollut. Res. 2016, 23, 785–792. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, D.; Wu, M.; Antwi, P.; Su, H.; Lai, C. Enhanced removal of refractory pollutant from aniline aerofloat wastewater using combined vacuum ultraviolet and ozone (VUV/O3) process. Water Sci. Technol. 2019, 80, 2250–2259. [Google Scholar] [CrossRef] [Green Version]
- Jie, X.; Wang, H.; Chen, Y. Removal of dianiline dithiophosphoric acid from wastewater by chelate precipitation. Desalin. Water Treat. 2016, 57, 5100–5107. [Google Scholar] [CrossRef]
- Liu, H.; Yu, D.; Sun, T.; Du, H.; Jiang, W.; Muhammad, Y.; Huang, L. Fabrication of surface alkalinized g-C3N4 and TiO2 composite for the synergistic adsorption-photocatalytic degradation of methylene blue. Appl. Surf. Sci. 2019, 473, 855–863. [Google Scholar] [CrossRef]
- Rashid, J.; Abbas, A.; Chang, L.C.; Iqbal, A.; Haq, I.U.; Rehman, A.; Awan, S.U.; Arshad, M.; Rafique, M.; Barakat, M.A. Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Sci. Total Environ. 2019, 665, 668–677. [Google Scholar] [CrossRef]
- Pang, N.N.; Lin, H.F.; Hu, J.Y. Photodegradation of fluazaindolizine in aqueous solution with graphitic carbon nitride nanosheets under simulated sunlight illumination. Ecotoxicol. Environ. Saf. 2019, 170, 33–38. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Y.; Liu, X.; Li, Q.; Zheng, Y. A novel PVDF-TiO2@g-C3N4 composite electrospun fiber for efficient photocatalytic degradation of tetracycline under visible light irradiation. Ecotoxicol. Environ. Saf. 2021, 210, 111866. [Google Scholar] [CrossRef]
- Balu, S.; Chen, Y.-L.; Yang, T.C.K.; Chen, J.-N.; Chen, S.-W. Effect of ultrasound-induced hydroxylation and exfoliation on P90-TiO2/g-C3N4 hybrids with enhanced optoelectronic properties for visible-light photocatalysis and electrochemical sensing. Ceram. Int. 2020, 46, 18002–18018. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, Y.; Yuan, X.; Zou, D.; Fang, J.; Jiang, L.; Zhang, J.; Yang, H.; Xiao, Z. MXene Ti3C2 derived Z-scheme photocatalyst of graphene layers anchored TiO2/g-C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chem. Eng. J. 2020, 394, 124921. [Google Scholar] [CrossRef]
- Du, X.; Bai, X.; Xu, L.; Yang, L.; Jin, P. Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants. Chem. Eng. J. 2020, 384, 123245. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Mei, J.; Sarina, S.; Wu, Z.; Liao, T.; Yan, C.; Sun, Z. Strongly interfacial-coupled 2D-2D TiO2/g-C3N4 heterostructure for enhanced visible-light induced synthesis and conversion. J. Hazard. Mater. 2020, 394, 122529. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Zhang, Q.; Chen, Y.; Hong, L.; Wang, B.; Chen, J.; Jing, H. New heterojunctions of CN/TiO2 with different band structure as highly efficient catalysts for artificial photosynthesis. Appl. Catal. B Environ. 2021, 285, 119781. [Google Scholar] [CrossRef]
- Zhou, P.; Shen, Y.; Zhao, S.; Li, G.; Cui, B.; Wei, D.; Shen, Y. Synthesis of clinoptilolite-supported BiOCl/TiO2 heterojunction nanocomposites with highly-enhanced photocatalytic activity for the complete degradation of xanthates under visible light. Chem. Eng. J. 2021, 407, 126697. [Google Scholar] [CrossRef]
- Iqbal, A.; Kafizas, A.; Sotelo-Vazquez, C.; Wilson, R.; Ling, M.; Taylor, A.; Blackman, C.; Bevan, K.; Parkin, I.; Quesada-Cabrera, R. Charge Transport Phenomena in Heterojunction Photocatalysts: The WO3/TiO2 System as an Archetypical Model. ACS Appl. Mater. Interfaces 2021, 13, 9781–9793. [Google Scholar] [CrossRef]
- Xiu, Z.; Xing, Z.; Li, Z.; Wu, X.; Yan, X.; Hu, M.; Cao, Y.; Yang, S.; Zhou, W. Ti3+-TiO2/Ce3+-CeO2 Nanosheet heterojunctions as efficient visible-light-driven photocatalysts. Mater. Res. Bull. 2018, 100, 191–197. [Google Scholar] [CrossRef]
- Wei, H.; McMaster, W.A.; Tan, J.Z.Y.; Chen, D.; Caruso, R.A. Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. J. Mater. Chem. A 2018, 6, 7236–7245. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, Y.; Wang, H.; Du, J. Mesoporous TiO2/g-C3N4 composites with O-Ti-N bridge for improved visible-light photodegradation of enrofloxacin. Sci. Total Environ. 2020, 724, 138280. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, L.; Peng, J.; Han, J.; Guo, S.; Zhang, L.; Han, Z.; Komarneni, S. TiO2@g-C3N4 core/shell spheres with uniform mesoporous structures for high performance visible-light photocatalytic application. Ceram. Int. 2019, 45, 18844–18851. [Google Scholar] [CrossRef]
- Zi, T.-Q.; Zhao, X.-R.; Liu, C.; Cao, Y.-Q.; Li, A.-D. A facile route to prepare TiO2/g-C3N4 nanocomposite photocatalysts by atomic layer deposition. J. Alloy. Compd. 2021, 855, 157446. [Google Scholar] [CrossRef]
- Sun, S.; Ding, H.; Mei, L.; Chen, Y.; Hao, Q.; Chen, W.; Xu, Z.; Chen, D. Construction of SiO2-TiO2/g-C3N4 composite photocatalyst for hydrogen production and pollutant degradation: Insight into the effect of SiO2. Chin. Chem. Lett. 2020, 31, 2287–2294. [Google Scholar] [CrossRef]
- Song, J.; Huang, M.; Jiang, N.; Zheng, S.; Mu, T.; Meng, L.; Liu, Y.; Liu, J.; Chen, G. Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetric aptasensor: Fabrication, optimization, and mechanism. J. Hazard. Mater. 2020, 391, 122024. [Google Scholar] [CrossRef]
- Meng, Z.; Zhou, B.; Xu, J.; Li, Y.; Hu, X.; Tian, H. Heterostructured Nitrogen and Sulfur Co-doped Black TiO2/g-C3N4Photocatalyst with Enhanced Photocatalytic Activity. Chem. Res. Chin. Univ. 2020, 36, 1045–1052. [Google Scholar] [CrossRef]
- Zhu, S.P.; Wang, C.Y.; Luo, X.P. Preparation and degradation activity for benzohydroxamic acid of Gd-doped anatase TiO2 photocatalysts. J. Chin. Ceram. Soc. 2017, 45, 1523–1530. [Google Scholar] [CrossRef]
- Zhu, S.P.; Wang, C.Y.; Wei, Z.Y.; Chen, Z.Y.; Wu, C.T.; Luo, X.P. Degradation activity for aniline aerofloat of Sm-doped TiO2 photocatalysts. J. Chin. Ceram. Soc. 2018, 46, 1632–1638. [Google Scholar] [CrossRef]
- Tan, Y.G.; Shu, Z.; Zhou, J.; Li, T.; Wang, W.; Zhao, Z. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl. Catal. B Environ. 2018, 230, 260–268. [Google Scholar] [CrossRef]
- Niu, P.; Zhang, L.L.; Liu, G.; Cheng, H.M. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Adv. Funct. Mater. 2012, 22, 4763–4770. [Google Scholar] [CrossRef]
- Tripathi, A.; Narayanan, S. Impact of TiO2 and TiO2/g-C3N4 Nanocomposite to Treat Industrial Wastewater. Environ. Nanotechnol. Monit. Manag. 2018, 10, 280–291. [Google Scholar] [CrossRef]
- Yousefzadeh, S. Effect of thermal condensation temperature on electrochemical capacitive properties of g-C3N4 supported on reduced TiO2 nanowires/nanotubes array. J. Alloy. Compd. 2019, 785, 1–6. [Google Scholar] [CrossRef]
- Pan, J.; You, M.; Chi, C.; Dong, Z.; Wang, B.; Zhu, M.; Zhao, W.; Song, C.; Zheng, Y.; Li, C. The two dimension carbon quantum dots modified porous g-C3N4/TiO2 nano-heterojunctions for visible light hydrogen production enhancement. Int. J. Hydrogen Energy 2018, 43, 6586–6593. [Google Scholar] [CrossRef]
- Pan, J.; Dong, Z.; Wang, B.; Jiang, Z.Y.; Zhao, C.; Wang, J.J.; Song, C.S.; Zheng, Y.Y.; Li, C.R. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction. Appl. Catal. B Environ. 2019, 242, 92–99. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, X.; Zhang, M.; Li, Q.; Yang, J. Construction of 2D/2D TiO2/g-C3N4 nanosheet heterostructures with improved photocatalytic activity. Mater. Res. Bull. 2020, 125, 110765. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Li, Y.; Zhang, C.; Wang, Y.; Zhang, W.; Wang, L.; Niu, L.; Wang, P.; Wang, C. Intimately coupled TiO2/g-C3N4 photocatalysts and in-situ cultivated biofilms enhanced nitrate reduction in water. Appl. Surf. Sci. 2020, 503, 144092. [Google Scholar] [CrossRef]
- Zada, A.; Khan, M.; Qureshi, M.N.; Liu, S.-Y.; Wang, R. Accelerating Photocatalytic Hydrogen Production and Pollutant Degradation by Functionalizing g-C3N4 With SnO2. Front. Chem. 2020, 7, 941. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Jin, C.; Cheng, Y.; Xu, L.; An, X.; Shang, W.; Zhang, Y.; Rao, X. Improvement of antibacterial activity of hydrothermal treated TC4 substrate through an in-situ grown TiO2/g-C3N4 Z-scheme heterojunction film. J. Alloy. Compd. 2020, 842, 155612. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, X.L.; Zheng, S.L.; Zhang, J.; Sheng, J.W. Effect of calcination on structure and photocatalytic property of N-TiO2/g-C3N4@diatomite hybrid photocatalyst for improving reduction of Cr(Ⅵ). Environ. Pollut. 2019, 245, 53–62. [Google Scholar] [CrossRef]
- Wang, W.K.; Chen, J.J.; Zhang, X.; Huang, Y.X.; Li, W.W.; Yu, H.Q. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Sci. Rep. 2016, 6, 20491. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Li, C. Roles of Phase Junction in Photocatalysis and Photoelectrocatalysis. J. Phys. Chem. C 2018, 122, 21083–21096. [Google Scholar] [CrossRef]
- Lei, J.; Chen, B.; Lv, W.; Zhou, L.; Wang, L.; Liu, Y.; Zhang, J. An inverse opal TiO2/g-C3N4 composite with a heterojunction for enhanced visible light-driven photocatalytic activity. Dalton Trans. 2019, 48, 3486–3495. [Google Scholar] [CrossRef]
- Fang, Y.; Huang, W.; Yang, S.; Zhou, X.; Ge, C.; Gao, Q.; Fang, Y.; Zhang, S. Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting. Int. J. Hydrogen Energy 2020, 45, 17378–17387. [Google Scholar] [CrossRef]
- Li, G.; Wu, Y.; Zhang, M.; Chu, B.; Huang, W.; Fan, M.; Dong, L.; Li, B. Enhanced Removal of Toxic Cr(VI) in Wastewater by Synthetic TiO2/g-C3N4 Microspheres/rGO Photocatalyst under Irradiation of Visible Light. Ind. Eng. Chem. Res. 2019, 58, 8979–8989. [Google Scholar] [CrossRef]
- Lin, X.; Sun, M.; Gao, B.; Ding, W.; Zhang, Z.; Anandan, S.; Umar, A. Hydrothermally regulating phase composition of TiO2 nanocrystals toward high photocatalytic activity. J. Alloy. Compd. 2021, 850, 156653. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Ai, Q.; Gao, G.; Yuan, L.; Fang, Q.; Tian, X.; Zhang, X.; Egap, E.; Ajayan, P.M.; et al. In Situ Synthesis of Lead-Free Halide Perovskite–COF Nanocomposites as Photocatalysts for Photoinduced Polymerization in Both Organic and Aqueous Phases. ACS Mater. Lett. 2022, 4, 464–471. [Google Scholar] [CrossRef]
- Kipkorir, A.; Dubose, J.; Cho, J.; Kamat, P.V. CsPbBr3–CdS heterostructure: Stabilizing perovskite nanocrystals for photocatalysis. Chem. Sci. 2021, 12, 14815–14825. [Google Scholar] [CrossRef]
- Colomer, M.T.; Campo, A.D. Preparation of nanostructured TiO2 films with high catalytic activity and their 3D spatial distribution of anatase and rutile phases. J. Mater. Sci. 2019, 54, 9414–9425. [Google Scholar] [CrossRef]
- Jin, C.; Li, Z.; Zhang, Y.; Wang, M.; Wu, Z.; Xie, Y.; Wang, Y.; Zhu, T. The construction of g-C3N4/Sm2+ doped Bi2WO6 2D/2D Z-scheme heterojunction for improved visible-light excited photocatalytic efficiency. Sep. Purif. Technol. 2019, 224, 33–43. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Li, Q.; Yang, J. The effect of N-doped form on visible light photoactivity of Z-scheme g-C3N4/TiO2 photocatalyst. Appl. Surf. Sci. 2019, 466, 268–273. [Google Scholar] [CrossRef]
- Li, C.; Lou, Z.; Yang, Y.; Wang, Y.; Lu, Y.; Ye, Z.; Zhu, L. Hollowsphere Nanoheterojunction of g-C3N4@TiO2 with High Visible Light Photocatalytic Property. Langmuir 2019, 35, 779–786. [Google Scholar] [CrossRef]
- Nethercot, A. Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts. Phys. Rev. Lett. 1974, 33, 1088–1091. [Google Scholar] [CrossRef]
- Mulliken, R.S. A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. J. Chem. Phys. 1934, 2, 782–793. [Google Scholar] [CrossRef]
- Corpus-Mendoza, A.N.; Moreno-Romero, P.M.; Hu, H. Evaluation of Mulliken Electronegativity on CH3NH3PbI3 Hybrid Perovskite as a Thought-Provoking Activity. J. Chem. Educ. 2019, 96, 974–978. [Google Scholar] [CrossRef]
- Hao, R.; Wang, G.; Tang, H.; Sun, L.; Xu, C.; Han, D. Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B Environ. 2016, 187, 47–58. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, X.; Hu, X.; Hu, J.; Zhang, X. Two-dimensional nanomaterials for photocatalytic water disinfection: Recent progress and future challenges. J. Chem. Technol. Biotechnol. 2019, 94, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.C. Research on Adsorption and Photocatalytic Activity of g-C3N4: First-Principle Calculation and Experimental Study. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2018. [Google Scholar]
Sample | Anatase/wt% | Rutile/wt% | a = b/nm | c/nm |
---|---|---|---|---|
Pure TiO2 | 5.6 | 94.4 | 1.42442 | 2.08097 |
10:1 | 30.3 | 69.7 | 1.30545 | 1.99599 |
20:1 | 76.8 | 23.2 | 0.80742 | 1.74158 |
30:1 | 23.7 | 76.3 | 1.05978 | 2.33788 |
40:1 | 26.8 | 73.2 | 1.19316 | 2.29493 |
50:1 | 48.9 | 51.1 | 1.10269 | 2.11718 |
Sample | g-C3N4 | Pure TiO2 | 10:1 | 20:1 | 30:1 | 40:1 | 50:1 |
---|---|---|---|---|---|---|---|
Surface area(m2·g−1) | 121.0 | 2.5 | 7.3 | 9.7 | 11.7 | 13.1 | 18.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Chen, Z.; Wang, C.; Pan, J.; Luo, X. Facile Synthesis with TiO2 Xerogel and Urea Enhanced Aniline Aerofloat Degradation Performance of Direct Z-Scheme Heterojunction TiO2/g-C3N4 Composite. Materials 2022, 15, 3613. https://doi.org/10.3390/ma15103613
Zhu S, Chen Z, Wang C, Pan J, Luo X. Facile Synthesis with TiO2 Xerogel and Urea Enhanced Aniline Aerofloat Degradation Performance of Direct Z-Scheme Heterojunction TiO2/g-C3N4 Composite. Materials. 2022; 15(10):3613. https://doi.org/10.3390/ma15103613
Chicago/Turabian StyleZhu, Sipin, Zhiyong Chen, Chunying Wang, Jiahao Pan, and Xianping Luo. 2022. "Facile Synthesis with TiO2 Xerogel and Urea Enhanced Aniline Aerofloat Degradation Performance of Direct Z-Scheme Heterojunction TiO2/g-C3N4 Composite" Materials 15, no. 10: 3613. https://doi.org/10.3390/ma15103613
APA StyleZhu, S., Chen, Z., Wang, C., Pan, J., & Luo, X. (2022). Facile Synthesis with TiO2 Xerogel and Urea Enhanced Aniline Aerofloat Degradation Performance of Direct Z-Scheme Heterojunction TiO2/g-C3N4 Composite. Materials, 15(10), 3613. https://doi.org/10.3390/ma15103613