Effect of HAc on the Metastable Pitting Corrosion of 304 SS in NaCl Solution
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Corrosion Behavior of 304 SS in 0.6 mol/L NaCl Solutions with HAc
3.2. Corrosion Behavior of 304 SS in 0.6 mol/L NaCl Solutions with different pH
4. Conclusions
- (1)
- Adding a certain amount of HAc to the 0.6 mol/L NaCl solution had an obvious promoting effect on the uniform corrosion of 304 SS, due to the decreasing pH of the solution by the HAc. With an increase in HAc concentration, the corrosion rate showed a decreasing tendency, which might be due to the adsorption of HAc on the steel surface.
- (2)
- The effects of HAc on the pitting corrosion of 304 SS are demonstrated as follows. On one hand, the metastable pits and the stable pits occur at relatively negative potentials (with the decreasing of Em and Eb) in the presence of HAc, while the growth process of metastable pits is promoted and easily transformed into bigger stable pits. On the other hand, the number of metastable pits is relatively lower.
- (3)
- The addition of HAc causes a decrease in the ratios of Fe3+/Fe2+ and Cr2O3/Cr(OH)3 and, thereby, the decreased stability of the passive film. The metastable pitting corrosion of 304 SS in the mixed solution of HAc and NaCl is influenced by the synthetic actions of solution pH, acetic acid concentration and the nature of the passive film.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahato, N.; Cho, M.H.; Singh, M.M. Electrochemical, surface analytical, and spectroscopic study of passive film and pits formation on food grade ferritic stainless steel AISI-430 in aqueous acetic acid containing chloride ions. Mater. Corros. 2018, 69, 1770–1783. [Google Scholar] [CrossRef]
- Adesina, A.Y.; Obot, I.B.; Sorour, A.A.; Mtongana, S.; Mamilla, S.B.; Almathami, A.A. Corrosion challenges and prevention in Ethyl Acetate (EA) production and related processes—An overview. Eng. Fail. Anal. 2021, 127, 105511. [Google Scholar] [CrossRef]
- Guan, L.; Cai, J.M.; Yang, X.Y.; Li, Y.; Wang, G. Metastable pitting behaviour of austenite stainless steel under compressive residual stress. Mater. Corros. 2020, 71, 537–542. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, H.T. Electrochemical study on metastable pitting behavior of metals. Corros. Sci. Prot. Technol. 1999, 11, 44–52. [Google Scholar]
- Nakhaie, D.; Zakeri, M.; Naghizadeh, M.; Moayed, M.H. Effect of thiosulfate on pitting corrosion of 316SS:II. Metastable pitting and transition to stability. J. Electrochem. Soc. 2015, 162, C121–C127. [Google Scholar] [CrossRef]
- Amin, M.A. Metastable and stable pitting events on Al induced by chlorate and perchlorate anions-Polarization, XPS and SEM studies. Electrochim. Acta 2009, 54, 1857–1863. [Google Scholar] [CrossRef]
- Tang, Y.M.; Zuo, Y.; Zhao, X.H. The metastable pitting behaviors of mild steel in bicarbonate and nitrite solutions containing Cl-. Corros. Sci. 2008, 50, 989–994. [Google Scholar] [CrossRef]
- Williams, D.E.; Stewart, J.; Balkwill, P.H. The nucleation, growth and stability of micropits in stainless Steel. Corros. Sci. 1994, 36, 1213–1235. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhao, Y.Z.; Zhang, X.; Chen, L. Effect of chloride concentration in a simulated concrete pore solution on metastable pitting of 304 stainless steel. J. Chin. Soc. Corros. Prot. 2021, 41, 195–201. [Google Scholar]
- Gong, X.Z.; Xiao, J.; Zuo, Y.; Zhao, J.M.; Xiong, J.P. Effect of pH value on metastable pitting corrosion behavior of stainless steel. J. B. Univ. Chem. Technol. (Nat. Sci. Ed). 2002, 29, 29–31. [Google Scholar]
- Pardo, A.; Otero, E.; Merino, M.C.; López, M.D.; Utrilla, M.V.; Moreno, F. Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels. Corrosion 2000, 56, 411–418. [Google Scholar] [CrossRef]
- Zuñiga-Diaz, K.; Arrieta-Gonzalez, C.D.; Porcayo-Calderon, J.; Gonzalez-Rodrigues, J.G.; Casales-Diaz, M.; Martinez-Gomez, L. Electrochemical behavior of austenitic stainless steels exposed to acetic acid solution. Int. J. Electrochem. Soc. 2020, 15, 1242–1263. [Google Scholar] [CrossRef]
- Kahyarian, A.; Brown, B.; Nesic, S. Mechanism of cathodic reactions in acetic acid corrosion of iron and mild steel. Corrosion 2016, 72, 1539–1546. [Google Scholar] [CrossRef]
- Gulbrandsen, E.; Bilkova, K. Solution chemistry effects on corrosion of carbon steels in presence of CO2 and acetic acid. In Proceedings of the CORROSION 2006 (NACE-International Corrosion Conference Series), San Diego, CA, USA, 12–16 March 2006; p. 06364. [Google Scholar]
- Crolet, J.L. Role of free acetic acid on the CO2 corrosion of steels. In Proceedings of the CORROSION 99 (NACE—International Corrosion Conference Series), San Antonio, TX, USA, 25–30 April 1999; p. 24. [Google Scholar]
- Asmara, Y.P.; Ismail, M.C. Study combinations effects of HAc in H2S/CO2 corrosion. J. Appl. Sci. 2011, 11, 1821–1826. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, A.; Rajaraman, P.V. Investigation of acetic acid effect on carbon steel corrosion in CO2-H2S medium: Mechanistic reaction pathway and kinetics. ACS Omega 2020, 5, 11378–11388. [Google Scholar] [CrossRef]
- Amri, J.; Gulbrandsen, E.; Nogueira, R.P. The effect of acetic acid on the pit propagation in CO2 corrosion of carbon steel. Electrochem. Commun. 2008, 10, 200–203. [Google Scholar] [CrossRef]
- Sikine, I.; Momoi, K. Corrosion behavior of SUS 329 J1 stainless steel in boiling acetic acid solutions. Boshoku Gijutsu. 1989, 38, 71–79. [Google Scholar]
- Leontaritis, L.; Horn, E.M. Corrosion of austenitic stainless steels in almost anhydrous acetic acid. Werkst. Korros. 1988, 39, 313–321. [Google Scholar] [CrossRef]
- Wei, J.Q.; Zhou, B.Q. Effect of acetic acid on the pitting corrosion of 2Cr12MoV turbine steel in early condensates containing chloride ions. Int. J. Electrochem. Sci. 2017, 12, 3166–3178. [Google Scholar] [CrossRef]
- Abel, J.; Virtanen, S. Corrosion of martensitic stainless steel in ethanol-containing gasoline: Influence of contamination by chloride, H2O and acetic acid. Corros. Sci. 2015, 98, 318–326. [Google Scholar] [CrossRef]
- Li, P.; Du, M.; Hou, J.; Zhang, Y.L.; Fan, L.; Lin, C.G. Corrosion behavior of 316L stainless steel in oilfield produced water in presence of CO2 and acetic acid. Int. J. Electrochem. Sci. 2020, 15, 4287–4307. [Google Scholar] [CrossRef]
- Tang, Y.M.; Zuo, Y.; Wang, J.N.; Zhao, X.H.; Niu, B.; Lin, B. The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions. Corros. Sci. 2014, 80, 111–119. [Google Scholar] [CrossRef]
- Benedetti, A.; Cirisano, F.; Delucchi, M.; Faimali, M.; Ferrari, M. Potentiodynamic study of Al-Mg alloy with superhydrophobic coating in photobiologically active/not active natural seawater. Colloids Surf. B Biointerfaces. 2016, 137, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.N.; Yang, S.F.; Li, J.S. Correlation between evolution of inclusions and pitting corrosion in 304 stainless steel with yttrium addition. Sci. Rep. 2018, 8, 4830. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.C.; Hu, X.J.; Pan, C.; Fu, S.P.; Lin, P.; Chou, K.C. Effects of inclusions on the resistance to pitting corrosion of S32205 duplex stainless steel. Mater. Corros. 2018, 69, 572–579. [Google Scholar] [CrossRef]
- Azambuja, D.S.; Muller, I.L. The influence of acetate concentration on the dissolution of iron in aqueous solutions. Corros. Sci. 1994, 36, 1835–1845. [Google Scholar] [CrossRef]
- Liu, G.Q.; Zhu, Z.Y.; Ke, W.; Han, E.H. Corrosion behavior of stainless steels and nickel-based alloys in acetic acid solutions containing bromide ions. Corrosion 2001, 57, 730–738. [Google Scholar] [CrossRef]
- Kahyarian, A.; Schumaker, A.; Brown, B.; Nesic, S. Acidic corrosion of mild steel in the presence of acetic acid: Mechanism and prediction. Electrochim. Acta. 2017, 258, 639–652. [Google Scholar] [CrossRef]
- Liang, D.D.; Wei, X.S.; Wang, Y.; Jiang, H.R.; Shen, J. Electrochemical behaviors and passive film properties of Fe-based bulk metallic glass in Cl--containing acetic acid solutions under high temperature. J. Alloy. Compd. 2018, 766, 964–972. [Google Scholar] [CrossRef]
- Taleiban, M.; Raeissi, K.; Atapour, M.; Fernández-Pérez, B.M.; Betancor-Abreu, A.; Llorente, I.; Fajardo, S.; Salarvand, Z.; Meghdadi, S.; Amirnasr, M.; et al. Pitting corrosion inhibition of 304 stainless steel in NaCl solution by three newly synthesized carboxylic Schiff bases. Corros. Sci. 2019, 160, 108130. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, Q.; Yuan, Y.F.; Guo, S.Y.; Pan, J. Effects of Cl- and AC on the corrosion behavior of 2507 super duplex stainless steel in a simulated concrete pore solution. J. Mater. Eng. Perform. 2020, 29, 8431–8440. [Google Scholar] [CrossRef]
- Detriche, S.; Vivegnis, S.; Vanhumbeeck, J.F.; Felten, A.; Louette, P.; Renner, F.U.; Delhalle, J.; Mekhalif, Z. XPS fast depth profile of the native oxide layers on AISI 304, 316 and 430 commercial stainless steels and their evolution with time. J. Electron Spectrosc. Relat. Phenom. 2020, 243, 146970. [Google Scholar] [CrossRef]
- Rao, V.S.; Singhal, L.K. Corrosion Behavior of Cr-Mn-Ni stainless steel in acetic acid solution. Corrosion 2010, 66, 292–307. [Google Scholar] [CrossRef]
- Kishi, K.; Ikeda, S. X-ray photoelectron spectroscopic study for the adsorption of acetic acid and ethylenediamine on iron and nickel. Appl. Surf. Sci. 1980, 5, 7–20. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Luo, H.Y.; Zhong, Q.P.; Yu, H.H.; Lv, J.L. Characterization of passive films formed on as-received and sensitized AISI 304 stainless steel. Chin. J. Mech. Eng. 2019, 32, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.W.; Tian, H.Y.; Gao, H.; Xie, F.Z.; Zhao, K.; Cui, Z.Y. Electrochemical and XPS analytical investigation of the accelerative effect of bicarbonate/ carbonate ions on AISI 304 in alkaline environment. Appl. Surf. Sci. 2019, 492, 792–807. [Google Scholar] [CrossRef]
- Lynch, B.; Wang, Z.C.; Ma, L.; Paschalidou, E.M.; Wiame, F.; Maurice, V.; Marcus, P. Passivation-induced Cr and Mo enrichments of 316L stainless steel surfaces and effects of controlled pre-oxidation. J. Electrochem. Soc. 2020, 167, 141509. [Google Scholar] [CrossRef]
- Carmezim, M.J.; Simões, A.M.; Montemor, M.F.; Belo, M.D.C. Capacitance behaviour of passive films on ferritic and austenitic stainless steel. Corros. Sci. 2005, 47, 581–591. [Google Scholar] [CrossRef]
- Lin, B.; Zuo, Y.; Tang, Y.M.; Zhao, X.H.; Rostron, P. Electrochemical comparative study of Q235 steel and 304 SS in simulated concrete pore solutions and the effect of chloride ions on their corrosion behavior. Int. J. Electrochem. Sci. 2019, 14, 3081–3094. [Google Scholar] [CrossRef]
- Freire, L.; Catarino, M.A.; Godinho, M.I.; Ferreira, M.J.; Ferreira, M.G.S.; Simões, A.M.P.; Montemor, M.F. Electrochemical and analytical investigation of passive films formed on stainless steels in alkaline media. Cem. Concr. Compos. 2012, 34, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, M.; Myung, S.T.; Kuwata, S.; Asaishi, R.; Yashiro, H. Corrosion behavior of austenitic stainless steels as a function of pH for use as bipolar plates in polymer electrolyte membrane fuel cells. Electrochim. Acta 2008, 53, 4205–4212. [Google Scholar] [CrossRef]
- Wang, Y.F.; Cheng, G.X.; Wu, W.; Qiao, Q.; Li, Y.; Li, X.F. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions. Appl. Surf. Sci. 2015, 349, 746–756. [Google Scholar] [CrossRef]
- Tang, Y.M.; Zuo, Y.; Zhao, H. The current fluctuations and accumulated pitting damage of mild steel in NaNO2-NaCl solution. Appl. Surf. Sci. 2005, 243, 82–88. [Google Scholar] [CrossRef]
- Hedges, B.; McVeigh, L. The Role of Acetate in CO2 Corrosion: The Double Whammy; CORROSION 99; AMPP: San Antonio, TX, USA, 25 April 1999. [Google Scholar]
- Cui, Z.Y.; Chen, S.S.; Dou, Y.P.; Han, S.; Wang, L.W.; Man, C.; Wang, X.; Chen, S.G.; Cheng, Y.F.; Li, X.G. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and pH. Corros. Sci. 2019, 150, 218–234. [Google Scholar] [CrossRef]
- Gong, Y.; Cao, j.; Meng, X.H.; Yang, Z.G. Pitting corrosion on 316L pipes in terephthalic acid (TA) dryer. Mater. Corros. 2009, 60, 899–908. [Google Scholar] [CrossRef]
- Yin, Z.F.; Zhao, W.Z.; Tian, W.; Feng, Y.R.; Yin, C.X. Pitting behavior on super 13Cr stainless steel in 3.5% NaCl solution in the presence of acetic acid. J. Solid State Electrochem. 2009, 13, 1291–1296. [Google Scholar] [CrossRef]
CHAc (mol/L) | pH | Ecorr (mVSCE) | Icorr (μA/cm2) | Ipass (μA/cm2) | Em (mVSCE) | Eb (VSCE) | Eb − Ecorr (VSCE) |
---|---|---|---|---|---|---|---|
0 | 7.2 | −195 | 0.145 | 0.346 | 168 | 464 | 659 |
0.8 | 2.3 | −134 | 2.124 | 4.050 | 98.7 | 336 | 470 |
1.6 | 2.2 | −105 | 1.922 | 3.220 | 70.2 | 284 | 319 |
3.2 | 2.1 | −98 | 1.022 | 2.040 | −56.4 | 207 | 305 |
CHAc (mol/L) | Location | Si (at %) | P (at %) | S (at %) | Cr (at %) | Mn (at %) | Ca (at %) | Fe (at %) |
---|---|---|---|---|---|---|---|---|
0 | 1: Matrix | 0.34 | 0.07 | 0.01 | 18.91 | 1.37 | - | 72.18 |
2: Inside the pit | 0.15 | 0.24 | 0.27 | 20.90 | 3.21 | 1.32 | 67.97 | |
3: Edge of the pit | 0.53 | 0.77 | 0.26 | 19.13 | 2.05 | 1.21 | 65.30 | |
0.8 | 1: Matrix | 0.39 | - | - | 18.02 | 1.34 | - | 67.47 |
2: Inside the pit | 0.52 | - | 1.09 | 18.65 | 2.44 | - | 61.83 | |
3: Edge of the pit | 0.82 | 0.36 | 0.85 | 15.69 | 0.72 | - | 59.16 | |
1.6 | 1: Matrix | 0.48 | - | - | 17.83 | 1.39 | - | 67.33 |
2: Inside the pit | 0.06 | 0.56 | - | 21.29 | 3.07 | 1.81 | 66.06 | |
3: Edge of the pit | 0.44 | - | - | 17.63 | 1.40 | - | 66.86 | |
3.2 | 1: Matrix | 0.58 | - | - | 18.07 | 1.09 | - | 67.68 |
2: Inside the pit | 0.12 | - | - | 20.34 | 2.78 | - | 67.18 | |
3: Edge of the pit | 0.84 | - | - | 16.01 | 0.94 | 0.36 | 59.20 |
Concentration of HAc Addition | [H+] (mol/L) | [Ac-] (mol/L) | [Undissociated HAc] (mol/L) |
---|---|---|---|
0.8 mol/L HAc (pH 2.3) | 10−2.3 | 0.00243 | 0.79757 |
1.6 mol/L HAc (pH 2.2) | 10−2.2 | 0.00442 | 1.59557 |
3.2 mol/L HAc (pH 2.1) | 10−2.1 | 0.00703 | 3.19296 |
HAc (mol/L) | 0 | 0.8 | 1.6 | 3.2 |
---|---|---|---|---|
Fe3+/Fe2+ | 1.85 | 0 | 0.56 | 0.72 |
Cr2O3/Cr(OH)3 | 1.45 | 1.28 | 1.22 | 1.22 |
pH | Ecorr (mVSCE) | Icorr (μA/cm−2) | Ipass (μA/cm−2) | Em (mVSCE) | Eb (mVSCE) | Eb-Em (mVSCE) |
---|---|---|---|---|---|---|
7.2 | −195 | 0.145 | 0.346 | 168 | 464 | 296 |
2.3 | −213 | 0.456 | 0.659 | 138 | 348 | 210 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Huang, W.; Wei, H.; Chen, Z.; Cao, J.; Tang, Y.; Zhao, X.; Zuo, Y. Effect of HAc on the Metastable Pitting Corrosion of 304 SS in NaCl Solution. Materials 2022, 15, 3618. https://doi.org/10.3390/ma15103618
Zhang H, Huang W, Wei H, Chen Z, Cao J, Tang Y, Zhao X, Zuo Y. Effect of HAc on the Metastable Pitting Corrosion of 304 SS in NaCl Solution. Materials. 2022; 15(10):3618. https://doi.org/10.3390/ma15103618
Chicago/Turabian StyleZhang, Hanlu, Wenqiang Huang, Han Wei, Zilong Chen, Jingyi Cao, Yuming Tang, Xuhui Zhao, and Yu Zuo. 2022. "Effect of HAc on the Metastable Pitting Corrosion of 304 SS in NaCl Solution" Materials 15, no. 10: 3618. https://doi.org/10.3390/ma15103618
APA StyleZhang, H., Huang, W., Wei, H., Chen, Z., Cao, J., Tang, Y., Zhao, X., & Zuo, Y. (2022). Effect of HAc on the Metastable Pitting Corrosion of 304 SS in NaCl Solution. Materials, 15(10), 3618. https://doi.org/10.3390/ma15103618