Estimation of Nanoporous Au Young’s Modulus from Serial Block Face-SEM 3D-Characterisation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and Dealloyed Materials. Annu. Rev. Mater. Res. 2016, 46, 263–286. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.M. Nanoporous metals: Fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem. Soc. Rev. 2012, 41, 7016. [Google Scholar] [CrossRef] [PubMed]
- Biener, J.; Wittstock, A.; Zepeda-Ruiz, L.A.; Biener, M.M.; Zielasek, V.; Kramer, D.; Viswanath, R.N.; Weissmüller, J.; Bäumer, M.; Hamza, A.V. Surface-chemistry-driven actuation in nanoporous gold. Nat. Mater. 2009, 8, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.M.; Biener, J.; Hayes, J.R.; Bythrow, P.M.; Volkert, C.A.; Hamza, A.V. Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 2007, 55, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Denk, W.; Horstmann, H. Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure. PLoS Biol. 2004, 2, e329. [Google Scholar] [CrossRef]
- Pia, G.; Delogu, F. Nanoporous Au: Statistical analysis of morphological features and evaluation of their influence on the elastic deformation behavior by phenomenological modeling. Acta Mater. 2015, 85, 250–260. [Google Scholar] [CrossRef]
- Liu, R.; Antoniou, A. A relationship between the geometrical structure of a nanoporous metal foam and its modulus. Acta Mater. 2013, 61, 2390–2402. [Google Scholar] [CrossRef]
- Seif, M.N.; Richardson, D.J.; Moody, K.M.; Martin, M.; Turner, M.; Mays, S.W.; John Balk, T.; Beck, M.J. Stochastic approach for determining properties of randomly structured materials: Effects of network connectivity. Acta Mater. 2022, 222, 117382. [Google Scholar] [CrossRef]
- Pia, G.; Brun, M.; Aymerich, F.; Delogu, F. Gyroidal structures as approximants to nanoporous metal foams: Clues from mechanical properties. J. Mater. Sci. 2017, 52, 1106–1122. [Google Scholar] [CrossRef]
- Mangipudi, K.R.; Epler, E.; Volkert, C.A. Topology-dependent scaling laws for the stiffness and strength of nanoporous gold. Acta Mater. 2016, 119, 115–122. [Google Scholar] [CrossRef]
- Zandersons, B.; Lührs, L.; Li, Y.; Weissmüller, J. On factors defining the mechanical behavior of nanoporous gold. Acta Mater. 2021, 215, 116979. [Google Scholar] [CrossRef]
- Richert, C.; Huber, N. Skeletonization, geometrical analysis, and finite element modeling of nanoporous gold based on 3D tomography data. Metals 2018, 8, 282. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Scaglione, F.; Paschalidou, E.M.; Rizzi, P.; Battezzati, L. Excellent surface enhanced Raman scattering obtained with nanoporous gold fabricated by chemical de-alloying. Chem. Phys. Lett. 2016, 665, 6–9. [Google Scholar] [CrossRef]
- Xue, Y.; Scaglione, F.; Celegato, F.; Denis, P.; Fecht, H.-J.; Rizzi, P.; Battezzati, L. Shape controlled gold nanostructures on de-alloyed nanoporous gold with excellent SERS performance. Chem. Phys. Lett. 2018, 709, 46–51. [Google Scholar] [CrossRef]
- Zankel, A.; Kraus, B.; Poelt, P.; Schaffer, M.; Ingolic, E. Ultramicrotomy in the ESEM, a versatile method for materials and life sciences. J. Microsc. 2009, 233, 140–148. [Google Scholar] [CrossRef]
- Brun, M.; Casnedi, L.; Pia, G. Bending strength of porous ceramics tiles: Bounds and estimates of effective properties of an Intermingled Fractal Units’ model. Ceram. Int. 2018, 44, 10241–10248. [Google Scholar] [CrossRef]
- Spangenberg, E. A fractal model for physical properties of porous rock: Theoretical formulations and application to elastic properties. J. Geophys. Res. Solid Earth 1998, 103, 12269–12289. [Google Scholar] [CrossRef]
- Pia, G. High porous yttria-stabilized zirconia with aligned pore channels: Morphology directionality influence on heat transfer. Ceram. Int. 2016, 42, 19–22. [Google Scholar] [CrossRef]
- Pia, G.; Delogu, F. On the elastic deformation behavior of nanoporous metal foams. Scr. Mater. 2013, 69, 781–784. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 1962, 10, 335–342. [Google Scholar] [CrossRef]
- Rambaldi, E.; Pabst, W.; Gregorová, E.; Prete, F.; Bignozzi, M.C. Elastic properties of porous porcelain stoneware tiles. Ceram. Int. 2017, 43, 6919–6924. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids, 2nd ed.; Cambridge University Press: Cambridge, UK, 1997; ISBN 9780521499118. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brun, M.; Sogne, E.; Falqui, A.; Scaglione, F.; Rizzi, P.; Delogu, F.; Pia, G. Estimation of Nanoporous Au Young’s Modulus from Serial Block Face-SEM 3D-Characterisation. Materials 2022, 15, 3644. https://doi.org/10.3390/ma15103644
Brun M, Sogne E, Falqui A, Scaglione F, Rizzi P, Delogu F, Pia G. Estimation of Nanoporous Au Young’s Modulus from Serial Block Face-SEM 3D-Characterisation. Materials. 2022; 15(10):3644. https://doi.org/10.3390/ma15103644
Chicago/Turabian StyleBrun, Michele, Elisa Sogne, Andrea Falqui, Federico Scaglione, Paola Rizzi, Francesco Delogu, and Giorgio Pia. 2022. "Estimation of Nanoporous Au Young’s Modulus from Serial Block Face-SEM 3D-Characterisation" Materials 15, no. 10: 3644. https://doi.org/10.3390/ma15103644
APA StyleBrun, M., Sogne, E., Falqui, A., Scaglione, F., Rizzi, P., Delogu, F., & Pia, G. (2022). Estimation of Nanoporous Au Young’s Modulus from Serial Block Face-SEM 3D-Characterisation. Materials, 15(10), 3644. https://doi.org/10.3390/ma15103644