Real-Time Observation of Magnetic Domain Structure Changes with Increasing Temperature for Z-Type Hexagonal Ferrite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pullar, R.C. Hexagonal Ferrites: A Review of the Synthesis, Properties and Applications of Hexaferrite Ceramics. Prog. Mater. Sci. 2012, 57, 1191–1334. [Google Scholar] [CrossRef]
- Dionne, G.F.; Oates, D.E.; Temme, D.H.; Weiss, J.A. Weiss. Ferrite-Superconductor Devices for Advanced Microwave Applications. IEEE Trans. Microw. Theory Tech. 1996, 44, 1361–1368. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, Q. Factors Affecting the Synthesis and Formation of Single-Phase Barium Hexaferrite by a Technique of Oxalate Precursor. Am. J. Appl. Sci. 2010, 7, 914. [Google Scholar] [CrossRef] [Green Version]
- Vinnik, D.A.; Tarasova, A.Y.; Zherebtsov, D.A.; Gudkova, S.A.; Galimov, D.M.; Zhivulin, V.E.; Trofimov, E.A.; Nemrava, S.; Perov, N.S.; Isaenko, L.I.; et al. Magnetic and Structural Properties of Barium Hexaferrite BaFe12O19 from Various Growth Techniques. Materials 2017, 10, 578. [Google Scholar] [CrossRef] [Green Version]
- Sanida, A.; Stavropoulos, S.; Speliotis, T.; Psarras, G.C. Magneto-Dielectric Behaviour of M-Type Hexaferrite/Polymer Nanocomposites. Materials 2018, 11, 2551. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T. Magnetoelectric Hexaferrites. Annu. Rev. Condens. Matter Phys. 2012, 3, 93–110. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Hiraoka, Y.; Honda, T.; Ishikura, T.; Nakamura, H.; Kimura, T. Low-Field Magnetoelectric Effect at Room Temperature. Nat. Mater. 2010, 9, 797–802. [Google Scholar] [CrossRef]
- Koutzarova, T.; Kolev, S.; Krezhov, K.; Georgieva, B.; Kovacheva, D.; Ghelev, C.; Vertruyen, B.; Boschini, F.; Mahmoud, A.; Tran, L.M.; et al. Study of the Structural and Magnetic Properties of Co-Substituted Ba2Mg2Fe12O22 Hexaferrites Synthesized by Sonochemical Co-Precipitation. Materials 2019, 12, 1414. [Google Scholar] [CrossRef] [Green Version]
- Chai, Y.S.; Chun, S.H.; Haam, S.Y.; Oh, Y.S.; Kim, I.; Kim, K.H. Low-Magnetic-Field Control of Dielectric Constant at Room Temperature Realized in Ba0.5Sr1.5Zn2Fe12O22. New J. Phys. 2009, 11, 073030. [Google Scholar] [CrossRef] [Green Version]
- Chun, S.H.; Chai, Y.; Jeon, B.-G.; Kim, H.J.; Oh, Y.S.; Kim, I.; Kim, H.; Jeon, B.J.; Haam, S.Y.; Park, J.-Y.; et al. Electric Field Control of Nonvolatile Four-State Magnetization at Room Temperature. Phys. Rev. Lett. 2012, 108, 177201. [Google Scholar] [CrossRef] [PubMed]
- Ishiwata, S.; Okuyama, D.; Kakurai, K.; Nishi, M.; Taguchi, Y.; Tokura, Y. Neutron diffraction studies on the multiferroic conical magnetBa2Mg2Fe12O22. Phys. Rev. B 2010, 81, 174418. [Google Scholar] [CrossRef]
- Ishiwata, S.; Taguchi, Y.; Murakawa, H.; Onose, Y.; Tokura, Y. Low-Magnetic-Field Control of Electric Polarization Vector in a Helimagnet. Science 2008, 319, 1643–1646. [Google Scholar] [CrossRef] [PubMed]
- Sagayama, H.; Taniguchi, K.; Abe, N.; Arima, T.-H.; Nishikawa, Y.; Yano, S.-I.; Kousaka, Y.; Akimitsu, J.; Matsuura, M.; Hirota, K. Two distinct ferroelectric phases in the multiferroicY-type hexaferriteBa2Mg2Fe12O22. Phys. Rev. B 2009, 80, 180419. [Google Scholar] [CrossRef]
- Ishizuka, K.; Allman, B. Phase Measurement in Electron Microscopy Using the Transport of Intensity Equation. Microsc. Today 2005, 13, 22–25. [Google Scholar] [CrossRef] [Green Version]
- Bajt, S.; Barty, A.; Nugent, K.A.; McCartney, M.; Wall, M.; Paganin, D. Quantitative Phase-Sensitive Imaging in a Transmission Electron Microscope. Ultramicroscopy 2000, 83, 67–73. [Google Scholar] [CrossRef]
- Paganin, D.; Nugent, K.A. Noninterferometric Phase Imaging with Partially Coherent Light. Phys. Rev. Lett. 1998, 80, 2586–2589. [Google Scholar] [CrossRef]
- Katsura, H.; Nagaosa, N.; Balatsky, A.V. Spin Current and Magnetoelectric Effect in Noncollinear Magnets. Phys. Rev. Lett. 2005, 95, 057205. [Google Scholar] [CrossRef] [Green Version]
- Sergienko, I.A.; Dagotto, E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 2006, 73, 094434. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Yu, X.; Aizawa, S.; Tanigaki, T.; Akashi, T.; Takahashi, Y.; Matsuda, T.; Kanazawa, N.; Onose, Y.; Shindo, D.; et al. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. Nat. Nanotechnol. 2014, 9, 337–342. [Google Scholar] [CrossRef]
- Tanase, M.; Petford-Long, A.K. In situ TEM observation of magnetic materials. Microsc. Res. Tech. 2009, 72, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Huber, E.E., Jr.; Smith, D.O.; Goodenough, J.B. Goodenough. Domain-Wall Structure in Permalloy Films. J. Appl. Phys. 1958, 29, 294–295. [Google Scholar] [CrossRef]
- Hertel, R.; Schneider, C.M. Exchange Explosions: Magnetization Dynamics During Vortex-Antivortex Annihilation. Phys. Rev. Lett. 2006, 97, 177202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, L.-C.; Zhang, Y.; Zuo, S.-L.; He, M.; Cai, J.-W.; Wang, S.-G.; Wei, H.-X.; Li, J.-Q.; Zhao, T.-Y.; Shen, B.-G. Lorentz transmission electron microscopy studies on topological magnetic domains. Chin. Phys. B 2018, 27, 15. [Google Scholar] [CrossRef]
- Zuo, S.; Zhang, M.; Li, R.; Peng, L.; Xiong, J.; Liu, D.; Zhao, T.; Hu, F.; Shen, B.; Sun, J. In situ observation of magnetic vortex manipulation by external fields in amorphous CeFeB ribbon. Acta Mater. 2017, 140, 465–471. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-D.; Park, I. Real-Time Observation of Magnetic Domain Structure Changes with Increasing Temperature for Z-Type Hexagonal Ferrite. Materials 2022, 15, 3646. https://doi.org/10.3390/ma15103646
Kim S-D, Park I. Real-Time Observation of Magnetic Domain Structure Changes with Increasing Temperature for Z-Type Hexagonal Ferrite. Materials. 2022; 15(10):3646. https://doi.org/10.3390/ma15103646
Chicago/Turabian StyleKim, Sung-Dae, and Ihho Park. 2022. "Real-Time Observation of Magnetic Domain Structure Changes with Increasing Temperature for Z-Type Hexagonal Ferrite" Materials 15, no. 10: 3646. https://doi.org/10.3390/ma15103646
APA StyleKim, S. -D., & Park, I. (2022). Real-Time Observation of Magnetic Domain Structure Changes with Increasing Temperature for Z-Type Hexagonal Ferrite. Materials, 15(10), 3646. https://doi.org/10.3390/ma15103646