Effect of High-Voltage Additives on Formation of Solid Electrolyte Interphases in Lithium-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Methods
2.2. AFM Measurements
2.3. Materials Characterization
2.4. Electrochemical Testing
2.5. Gas Generation Behavior
3. Results and Discussion
3.1. LSV Tests
3.2. In Situ EC-AFM of Different Electrolytes on HOPG
3.3. In Situ EC-AFM of E3 on LMR Cathode
3.4. DEMS Tests
3.5. Electrochemical Impedance
3.6. XPS Analysis
3.7. Cycle Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Chen, L. Materials electrochemistry for high energy density power batteries. Chin. Sci. Bull. 2021, 65, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Ji, X.; Chen, J.; Chen, L.; Fan, X.; Mu, D.; Wang, C. Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. Angew. Chem. Int. Ed. Engl. 2020, 132, 22378–22385. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.-G.; Xu, W. Advancing Lithium Metal Batteries. Joule 2018, 2, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Wang, C. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566. [Google Scholar] [CrossRef]
- Liu, S.; Ji, X.; Piao, N.; Chen, J.; Eidson, N.; Xu, J.; Wang, P.; Chen, L.; Zhang, J.; Deng, T.; et al. Inorganic-rich Solid Electrolyte Interphase for Advanced Lithium Metal Batteries in Carbonate Electrolytes. Angew. Chem. Int. Ed. Engl. 2020, 60, 3661–3671. [Google Scholar] [CrossRef]
- Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, J.L.G.; Li, H.; Harris, S.J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012, 134, 15476–15487. [Google Scholar] [CrossRef]
- Huang, S.; Cheong, L.-Z.; Wang, D.; Shen, C. Thermal stability of solid electrolyte interphase of lithium-ion batteries. Appl. Surf. Sci. 2018, 454, 61–67. [Google Scholar] [CrossRef]
- Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. NPJ Comput. Mater. 2018, 4, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Weaver, J.L.; Groenenboom, M.; Nakamura, N.; Rus, E.; Anand, P.; Jha, S.K.; Okasinski, J.S.; Dura, J.A.; Reeja-Jayan, B. Tailoring Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Using Molecularly Engineered Functional Polymers. ACS Appl. Mater. Interfaces 2021, 13, 9919–9931. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.-L.; Liu, Q.; Lau, K.K.S.; Liu, Y.; Liu, X.; Gao, H.; Zhou, X.; Zhuang, M.; Ren, Y.; Li, J.; et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494. [Google Scholar] [CrossRef]
- Piao, N.; Liu, S.; Zhang, B.; Ji, X.; Fan, X.; Wang, L.; Wang, P.-F.; Jin, T.; Liou, S.-C.; Yang, H.; et al. Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Lett. 2021, 6, 1839–1848. [Google Scholar] [CrossRef]
- Alvarado, J.; Schroeder, M.; Zhang, M.; Borodin, O.; Gobrogge, E.; Olguin, M.; Ding, M.S.; Gobet, M.; Greenbaum, S.; Meng, Y.S.; et al. A carbonate-free, sulfone-based electrolyte for high-voltage Li-ion batteries. Mater. Today 2018, 21, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Tornheim, A.; Sahore, R.; He, M.; Croy, J.R.; Zhang, Z. Preformed Anodes for High-Voltage Lithium-Ion Battery Performance: Fluorinated Electrolytes, Crosstalk, and the Origins of Impedance Rise. J. Electrochem. Soc. 2018, 165, A3360–A3368. [Google Scholar] [CrossRef]
- Cheng, Z.; Mao, Y.; Dong, Q.; Jin, F.; Shen, Y.; Chen, L. Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode. Acta Phys. Chim. Sin. 2019, 35, 868–875. [Google Scholar] [CrossRef]
- Li, J.; Xing, L.; Zhang, L.; Yu, L.; Fan, W.; Xu, M.; Li, W. Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive. J. Power Sources 2016, 324, 17–25. [Google Scholar] [CrossRef]
- Rong, H.; Xu, M.; Xie, B.; Liao, X.; Huang, W.; Xing, L.; Li, W. Tris (trimethylsilyl) borate (TMSB) as a cathode surface film forming additive for 5 V Li/LiNi0.5Mn1.5O4 Li-ion cells. Electrochim. Acta 2014, 147, 31–39. [Google Scholar] [CrossRef]
- Wang, X.; Xue, W.-D.; Hu, K.; Li, Y.; Li, Y.; Huang, R.-Y. Adiponitrile as lithium-ion battery electrolyte additive: A positive and peculiar effect on high-voltage systems. ACS Appl. Energy Mater. 2018, 1, 5347–5354. [Google Scholar] [CrossRef]
- Song, Y.-M.; Han, J.; Park, S.; Lee, K.T.; Choi, N. A multifunctional phosphite-containing electrolyte for 5 V-class LiNi0.5Mn1.5O4 cathodes with superior electrochemical performance. J. Mater. Chem. A 2014, 2, 9506–9513. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Harte, P.; van Wickeren, S.; Borzutzki, K.; Röser, S.; Bärmann, P.; Nowak, S.; Winter, M.; Placke, T.; Kasnatscheew, J. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Rep. Phys. Sci. 2021, 2, 100521. [Google Scholar] [CrossRef]
- Li, S.; Fang, S.; Li, Z.; Chen, W.; Dou, H.; Zhang, X. A high-voltage lithium-metal batteries electrolyte based on fully-methylated pivalonitrile. Batter. Supercaps 2022, 5, e202100416. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Bettge, M.; Abraham, D.P. Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells. J. Electrochem. Soc. 2012, 159, A2109–A2117. [Google Scholar] [CrossRef]
- Gu, Y.; Fang, S.; Zhang, X.; Tang, Y.; Chen, Y.; Yang, L.; Hirano, S.-I. A Non-Flammable Electrolyte for Lithium-Ion Batteries Containing Lithium Difluoro(oxalato)borate, Propylene Carbonate and Tris(2,2,2-Trifluoroethyl)Phosphate. J. Electrochem. Soc. 2020, 167, 080524. [Google Scholar] [CrossRef]
- Blyth, R.; Buqa, H.; Netzer, F.; Ramsey, M.; Besenhard, J.; Golob, P.; Winter, M. XPS studies of graphite electrode materials for lithium ion batteries. Appl. Surf. Sci. 2000, 167, 99–106. [Google Scholar] [CrossRef]
- Shutthanandan, V.; Nandasiri, M.; Zheng, J.; Engelhard, M.H.; Xu, W.; Thevuthasan, S.; Murugesan, V. Applications of XPS in the characterization of Battery materials. J. Electron Spectrosc. Relat. Phenom. 2019, 231, 2–10. [Google Scholar] [CrossRef]
- Hope, M.A.; Rinkel, B.L.D.; Gunnarsdóttir, A.B.; Märker, K.; Menkin, S.; Paul, S.; Sergeyev, I.V.; Grey, C.P. Selective NMR observation of the SEI-metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Wan, C.; Xu, S.; Hu, M.Y.; Cao, R.; Qian, J.; Qin, Z.; Liu, J.; Mueller, K.T.; Zhang, J.-G.; Hu, J.Z. Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2017, 9, 14741–14748. [Google Scholar] [CrossRef]
- Thomas, M.; Bruce, P.G.; Goodenough, J.B. AC impedance analysis of polycrystalline insertion electrode—Application to Li1-XCoO2. J. Electrochem. Soc. 1985, 132, 1521–1528. [Google Scholar] [CrossRef]
- Itagaki, M.; Itagaki, M.; Honda, K.; Hoshi, Y.; Shitanda, I. In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle. J. Electroanal. Chem. 2015, 737, 78–84. [Google Scholar] [CrossRef]
- Liu, X.H.; Huang, J.Y. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 2011, 4, 3844–3860. [Google Scholar] [CrossRef]
- Wang, H.; Jang, Y.; Huang, B.; Sadoway, D.R.; Chiang, Y. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 473–480. [Google Scholar] [CrossRef]
- Tsuda, T.; Kanetsuku, T.; Sano, T.; Oshima, Y.; Ui, K.; Yamagata, M.; Ishikawa, M.; Kuwabata, S. In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery. Microscopy 2015, 64, 159–168. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, N. Visualizing Battery Reactions and Processes by Using In Situ and In Operando Microscopies. Chem 2018, 4, 438–465. [Google Scholar] [CrossRef] [Green Version]
- Minato, T.; Umeda, K.-I.; Kobayashi, K.; Araki, Y.; Konishi, H.; Ogumi, Z.; Abe, T.; Onishi, H.; Yamada, H. Atomic-level nature of solid/liquid interface for energy conversion revealed by frequency modulation atomic force microscopy. Jpn. J. Appl. Phys. 2021, 60, SE0806. [Google Scholar] [CrossRef]
- Li, W.; Cho, Y.-G.; Yao, W.; Li, Y.; Cronk, A.; Shimizu, R.; Schroeder, M.A.; Fu, Y.; Zou, F.; Battaglia, V.; et al. Enabling high areal capacity for Co-free high voltage spinel materials in next-generation Li-ion batteries. J. Power Sources 2020, 473, 228579. [Google Scholar] [CrossRef]
- Li, L.; Lee, K.S.; Lu, L. Li-rich layer-structured cathode materials for high energy Li-ion batteries. Funct. Mater. Lett. 2014, 7, 1430002. [Google Scholar] [CrossRef]
- Yang, S.; Yan, B.; Li, T.; Zhu, J.; Lu, L.; Zeng, K. In situ studies of lithium-ion diffusion in a lithium-rich thin film cathode by scanning probe microscopy techniques. Phys. Chem. Chem. Phys. 2015, 17, 22235–22242. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Yan, B.; Lu, L.; Zeng, K. Grain boundary effects on Li-ion diffusion in a Li1.2Co0.13Ni0.13Mn0.54O2 thin film cathode studied by scanning probe microscopy techniques. R. Soc. Adv. 2016, 6, 94000–94009. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Li, T.; Tian, T. In situ study of Li-ions diffusion and deformation in Li-rich cathode materials by using scanning probe microscopy techniques. J. Phys. D Appl. Phys. 2017, 50, 313001. [Google Scholar] [CrossRef]
- Shen, C.; Hu, G.; Cheong, L.; Huang, S.; Zhang, J.; Wang, D. Direct Observation of the Growth of Lithium Dendrites on Graphite Anodes by Operando EC-AFM. Small Methods 2018, 2, 1700298. [Google Scholar] [CrossRef]
- Domi, Y.; Ochida, M.; Tsubouchi, S.; Nakagawa, H.; Yamanaka, T.; Doi, T.; Abe, T.; Ogumi, Z. Electrochemical AFM Observation of the HOPG Edge Plane in Ethylene Carbonate-Based Electrolytes Containing Film-Forming Additives. J. Electrochem. Soc. 2012, 159, A1292–A1297. [Google Scholar] [CrossRef]
- Zhang, K.; Qi, J.; Song, J.; Zuo, Y.; Yang, Y.; Yang, T.; Chen, T.; Liu, X.; Chen, L.; Xia, D. Sulfuration of Li-rich Mn-based cathode materials for multianionic redox and stabilized coordination environment. Adv. Mater. 2022, 34, e2109564. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Chen, L.; Huang, X. Research on Advanced Materials for Li-ion Batteries. Adv. Mater. 2009, 21, 4593–4607. [Google Scholar] [CrossRef]
- Zu, C.-X.; Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 2011, 4, 2614–2624. [Google Scholar] [CrossRef]
Name | Electrolyte Components |
---|---|
Base 1 (B1) | 0.7 M/L LiDFOB EC |
Base 2 (B2) | 0.7 M/L LiDFOB DMS/EC |
Electrolyte 1 (E1) | 0.7 M/L LiDFOB DMS/EC 4 vt% TMB |
Electrolyte 2 (E2) | 0.7 M/L LiDFOB DMS/EC 2 vt% ADN |
Electrolyte 3 (E3) | 0.7 M/L LiDFOB DMS/EC 4 vt% TMB 2 vt% ADN |
RSEI/Ω | RSEI’/Ω | |
---|---|---|
B2 (Gr) | 21.764 | 19.112 |
E1 (Gr) | 32.843 | 26.735 |
E2 (Gr) | 27.814 | 46.79 |
E3 (Gr) | 26.786 | 95.41 |
E3 (LMR) | 21.308 | 31.318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Huang, Y.; Shi, Z.; Luo, H.; Liu, Z.; Shen, C. Effect of High-Voltage Additives on Formation of Solid Electrolyte Interphases in Lithium-Ion Batteries. Materials 2022, 15, 3662. https://doi.org/10.3390/ma15103662
Chen M, Huang Y, Shi Z, Luo H, Liu Z, Shen C. Effect of High-Voltage Additives on Formation of Solid Electrolyte Interphases in Lithium-Ion Batteries. Materials. 2022; 15(10):3662. https://doi.org/10.3390/ma15103662
Chicago/Turabian StyleChen, Minjing, Yunbo Huang, Zhepu Shi, Hao Luo, Zhaoping Liu, and Cai Shen. 2022. "Effect of High-Voltage Additives on Formation of Solid Electrolyte Interphases in Lithium-Ion Batteries" Materials 15, no. 10: 3662. https://doi.org/10.3390/ma15103662
APA StyleChen, M., Huang, Y., Shi, Z., Luo, H., Liu, Z., & Shen, C. (2022). Effect of High-Voltage Additives on Formation of Solid Electrolyte Interphases in Lithium-Ion Batteries. Materials, 15(10), 3662. https://doi.org/10.3390/ma15103662