A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Elements Model Studies
2.2. Data Analysis
3. Results
3.1. Stress at the Crown
3.2. Abutment
3.3. Implant
3.4. Bone
4. Discussion
Material | EH | IH | MT | CC | CT |
---|---|---|---|---|---|
Total number of nodes | 61,529 | 102,590 | 120,983 | 120,174 | 127,650 |
Total number of items | 42,373 | 70,200 | 78,599 | 82,528 | 87,618 |
% of distorted elements (Jacobian) | 0 | 0 | 0 | 0 | 0 |
Item size | 1.4 mm | 1.16 mm | 1.04 mm | 1.03 mm | 1.03 mm |
Tolerance | 0.07 mm | 0.05 mm | 0.05 mm | 0.05 mm | 0.05 mm |
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Raoofi, S.; Khademi, M.; Amid, R.; Kadkhodazadeh, M.; Movahhedi, M.R. Comparison of the Effect of Three Abutment-implant Connections on Stress Distribution at the Internal Surface of Dental Implants: A Finite Element Analysis. J. Dent. Res. Dent. Clin. Dent. Prospect. 2013, 7, 132–139. [Google Scholar] [CrossRef]
- Sakka, S.; Baroudi, K.; Nassani, M.Z. Factors Associated with Early and Late Failure of Dental Implants. J. Investig. Clin. Dent. 2012, 3, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Consolaro, A.; de Carvalho, R.S.; Francischone, C.E., Jr.; Consolaro, M.F.M.O.; Francischone, C.E. Saucerização de Implantes Osseointegrados e o Planejamento de Casos Clínicos Ortodônticos Simultâneos. Dent. Press J. Orthod. 2010, 15, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, A.M.; Klawitter, J.J.; Anand, S.C.; Schuessler, R. Stress Analysis of Porous Rooted Dental Implants. J. Dent. Res. 1976, 55, 772–777. [Google Scholar] [CrossRef]
- Pesqueira, A.A.; Goiato, M.C.; Filho, H.G.; Monteiro, D.R.; dos Santos, D.M.; Haddad, M.F.; Pellizzer, E.P. Use of Stress Analysis Methods to Evaluate the Biomechanics of Oral Rehabilitation with Implants. J. Oral Implantol. 2014, 40, 217–228. [Google Scholar] [CrossRef]
- Ricciardi Coppedê, A.; Lapria Faria, A.C.; Chiarello de Mattos, M.d.G.; Silveira Rodrigues, R.C.; Shibli, J.A.; Faria Ribeiro, R. Mechanical Comparison of Experimental Conical-Head Abutment Screws with Conventional Flat-Head Abutment Screws for External-Hex and Internal Tri-Channel Implant Connections: An In Vitro Evaluation of Loosening Torque. Int. J. Oral Maxillofac. Implant. 2013, 28, e321–e329. [Google Scholar] [CrossRef] [Green Version]
- Formiga, M. Evaluation Using FEM on the Stress Distribution on the Implant, Prosthetic Components and Crown, with Cone Morse, External and Internal Hexagon Connections. Dent. Press Implantol. 2013, 7, 67–75. [Google Scholar]
- Bechelli, A.H. Carga Imediata em Implantologia Oral: Protocolos Diagnósticos, Quirúrgicos e Protéticos; Casos Clinicos; Providence: Buenos Aires, Argentina, 2006. [Google Scholar]
- Gehrke, S.; Junior, J.; Dedavid, B.; Shibli, J. Analysis of Implant Strength After Implantoplasty in Three Implant-Abutment Connection Designs: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2016, e65–e70. [Google Scholar] [CrossRef]
- Tabata, L.F.; Rocha, E.P.; Barão, V.A.R.; Assunção, W.G. Platform Switching: Biomechanical Evaluation Using Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2011, 26, 482–491. [Google Scholar]
- Cho, S.-Y.; Huh, Y.-H.; Park, C.-J.; Cho, L.-R. Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection. Int. J. Periodontics Restor. Dent. 2016, 36, e49–e58. [Google Scholar] [CrossRef] [Green Version]
- Borie, E.; Orsi, I.; Noritomi, P.; Kemmoku, D. Three-Dimensional Finite Element Analysis of the Biomechanical Behaviors of Implants with Different Connections, Lengths, and Diameters Placed in the Maxillary Anterior Region. Int. J. Oral Maxillofac. Implant. 2016, 31, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anami, L.C.; da Costa Lima, J.M.; Takahashi, F.E.; Neisser, M.P.; Noritomi, P.Y.; Bottino, M.A. Stress Distribution Around Osseointegrated Implants With Different Internal-Cone Connections: Photoelastic and Finite Element Analysis. J. Oral Implantol. 2015, 41, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanagan, D.; Phillips, J.; Connor, M.; Dyer, T.; Kazerounian, K. Hoop Stress and the Conical Connection. J. Oral Implantol. 2015, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, D.-G.; Park, C.-J.; Cho, L.-R. Axial Displacements in External and Internal Implant-Abutment Connection. Clin. Oral Implant. Res. 2014, 25, e83–e89. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.M.; Nogueira-Filho, G.; Tenenbaum, H.C.; Lai, J.Y.; Brito, C.; Döring, H.; Nonhoff, J. Performance of Conical Abutment (Morse Taper) Connection Implants: A Systematic Review. J. Biomed. Mater. Res. A 2014, 102, 552–574. [Google Scholar] [CrossRef]
- Coppedê, A.R.; Bersani, E.; de Mattos, M.d.G.C.; Rodrigues, R.C.S.; Sartori, I.A.d.M.; Ribeiro, R.F. Fracture Resistance of the Implant-Abutment Connection in Implants with Internal Hex and Internal Conical Connections under Oblique Compressive Loading: An in Vitro Study. Int. J. Prosthodont. 2009, 22, 283–286. [Google Scholar]
- Davi, L.R.; Golin, A.L.; Bernardes, S.R.; de Araújo, C.A.; Neves, F.D. In Vitro Integrity of Implant External Hexagon after Application of Surgical Placement Torque Simulating Implant Locking. Braz. Oral Res. 2008, 22, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Vigolo, P.; Fonzi, F.; Majzoub, Z.; Cordioli, G. Evaluation of Gold-Machined UCLA-Type Abutments and CAD/CAM Titanium Abutments with Hexagonal External Connection and with Internal Connection. Int. J. Oral Maxillofac. Implant. 2008, 23, 247–252. [Google Scholar]
- Chun, H.-J.; Shin, H.-S.; Han, C.-H.; Lee, S.-H. Influence of Implant Abutment Type on Stress Distribution in Bone under Various Loading Conditions Using Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2006, 21, 195–202. [Google Scholar]
- Pessoa, R.S.; Coelho, P.G.; Muraru, L.; Marcantonio, E.; Vaz, L.G.; Vander Sloten, J.; Jaecques, S.V.N. Influence of Implant Design on the Biomechanical Environment of Immediately Placed Implants: Computed Tomography-Based Nonlinear Three-Dimensional Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2011, 26, 1279–1287. [Google Scholar]
- Lemus Cruz, L.M.; Almagro Urrutia, Z.; Claudia León Castell, A. Origen y Evolucion de Los Implantes Dentales. Rev. Habanera Cienc. Médicas 2009, 8. [Google Scholar]
- Doş, A. Biomechanical Study of Prosthetic Interfaces: A Literature Review. Available online: https://www.semanticscholar.org/paper/Biomechanical-study-of-prosthetic-interfaces-%3A-A-Do%C5%9F/ec44f07a2b432f689ad1076a1772095c533024f8 (accessed on 16 February 2022).
- Gazzotti, P.D.; Endruhn, A. La Rehabilitacion Implanto-Protesica; Providence: Buenos Aires, Argentina, 2011. [Google Scholar]
- Baggi, L.; Cappelloni, I.; Di Girolamo, M.; Maceri, F.; Vairo, G. The Influence of Implant Diameter and Length on Stress Distribution of Osseointegrated Implants Related to Crestal Bone Geometry: A Three-Dimensional Finite Element Analysis. J. Prosthet. Dent. 2008, 100, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Quaresma, S.E.T.; Cury, P.R.; Sendyk, W.R.; Sendyk, C. A Finite Element Analysis of Two Different Dental Implants: Stress Distribution in the Prosthesis, Abutment, Implant, and Supporting Bone. J. Oral Implantol. 2008, 34, 1–6. [Google Scholar] [CrossRef]
- Gardner, D.M. Platform Switching as a Means to Achieving Implant Esthetics. N. Y. State Dent. J. 2005, 71, 34–37. [Google Scholar]
- Mangano, C.; Bartolucci, E.G. Single Tooth Replacement by Morse Taper Connection Implants: A Retrospective Study of 80 Implants. Int. J. Oral Maxillofac. Implant. 2001, 16, 675–680. [Google Scholar]
- Gil, F.J.; Aparicio, C.; Manero, J.M.; Padros, A. Influence of the Height of the External Hexagon and Surface Treatment on Fatigue Life of Commercially Pure Titanium Dental Implants. Int. J. Oral Maxillofac. Implant. 2009, 24, 583–590. [Google Scholar]
- Shi, L.; Li, H.; Fok, A.S.L.; Ucer, C.; Devlin, H.; Horner, K. Shape Optimization of Dental Implants. Int. J. Oral Maxillofac. Implant. 2007, 22, 911–920. [Google Scholar]
- Abu-Hammad, O.A.; Harrison, A.; Williams, D. The Effect of a Hydroxyapatite-Reinforced Polyethylene Stress Distributor in a Dental Implant on Compressive Stress Levels in Surrounding Bone. Int. J. Oral Maxillofac. Implant. 2000, 15, 559–564. [Google Scholar]
- Sakoh, J.; Wahlmann, U.; Stender, E.; Nat, R.; Al-Nawas, B.; Wagner, W. Primary Stability of a Conical Implant and a Hybrid, Cylindric Screw-Type Implant in Vitro. Int. J. Oral Maxillofac. Implant. 2006, 21, 560–566. [Google Scholar]
- Mangano, C.; Mangano, F.; Piattelli, A.; Iezzi, G.; Mangano, A.; La Colla, L. Prospective Clinical Evaluation of 307 Single-Tooth Morse Taper-Connection Implants: A Multicenter Study. Int. J. Oral Maxillofac. Implant. 2010, 25, 394–400. [Google Scholar]
- Zambrano, M.E.A.; Reina, A.C.; Domínguez, G.C.; Fernández, D.A.G.; Fábrega, J.G. Biomecánica en implantología. Periodoncia Osteointegración 2005, 15, 311–326. [Google Scholar]
- Pessoa, R.S.; Muraru, L.; Júnior, E.M.; Vaz, L.G.; Sloten, J.V.; Duyck, J.; Jaecques, S.V.N. Influence of Implant Connection Type on the Biomechanical Environment of Immediately Placed Implants—CT-Based Nonlinear, Three-Dimensional Finite Element Analysis. Clin. Implant Dent. Relat. Res. 2009, 12, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.-M.; Huang, H.-L.; Hsu, J.-T.; Fuh, L.-J. Influences of Internal Tapered Abutment Designs on Bone Stresses Around a Dental Implant: Three-Dimensional Finite Element Method With Statistical Evaluation. J. Periodontol. 2012, 83, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Karl, M.; Winter, W.; Taylor, T.D.; Heckmann, S.M. In Vitro Study on Passive Fit in Implant-Supported 5-Unit Fixed Partial Dentures. Int. J. Oral Maxillofac. Implant. 2004, 19, 30–37. [Google Scholar]
- McNeill, C. Fundamentos Cientif icos y Aplicaciones Prácticas de la Oclusión; Quintessence: Barcelona, Spain, 2005. [Google Scholar]
- Eskitascioglu, G.; Usumez, A.; Sevimay, M.; Soykan, E.; Unsal, E. The Influence of Occlusal Loading Location on Stresses Transferred to Implant-Supported Prostheses and Supporting Bone: A Three-Dimensional Finite Element Study. J. Prosthet. Dent. 2004, 91, 144–150. [Google Scholar] [CrossRef]
- Misch, C.E. Implantologia Contemporanea; Elservier: New York, NY, USA, 2009. [Google Scholar]
- Linck, G.K.S.B.; Ferreira, G.M.; De Oliveira, R.C.G.; Lindh, C.; Leles, C.R.; Ribeiro-Rotta, R.F. The Influence of Tactile Perception on Classification of Bone Tissue at Dental Implant Insertion. Clin. Implant Dent. Relat. Res. 2016, 18, 601–608. [Google Scholar] [CrossRef]
- Cícero Dinato, J.; Daudt Polido, W. Implantes Oseointegrados: Cirugía y Prótesis; Artes Médicas: Sao Paulo, Brasil, 2003. [Google Scholar]
- Beltrán, V.; Into, F.R.P.; Amos, G.d.G.R.; Iotti, D.; So, L.B. Switching Platform on Esthetic Area: Case Report. Dent. Press Implantol. 2012, 6, 93–103. [Google Scholar]
- Pellizzer, E.P.; Verri, F.R.; Falcón-Antenucci, R.M.; Júnior, J.F.S.; de Carvalho, P.S.P.; de Moraes, S.L.D.; Noritomi, P.Y. Stress Analysis in Platform-Switching Implants: A 3-Dimensional Finite Element Study. J. Oral Implantol. 2012, 38, 587–594. [Google Scholar] [CrossRef]
- Hong, H.R.; Pae, A.; Kim, Y.; Paek, J.; Kim, H.-S.; Kwon, K.-R. Effect of Implant Position, Angulation, and Attachment Height on Peri-Implant Bone Stress Associated with Mandibular Two-Implant Overdentures: A Finite Element Analysis. Int. J. Oral Maxillofac. Implant. 2012, 27, e69–e76. [Google Scholar]
- Huiskes, R.; Chao, E.Y. A Survey of Finite Element Analysis in Orthopedic Biomechanics: The First Decade. J. Biomech. 1983, 16, 385–409. [Google Scholar] [CrossRef]
- Hurtado, J.E.; Jorge, E. Análisis de elementos finitos estocásticos por estimaciones puntuales y expansión espectral. Rev. Int. Métod. Numér. Para Cálculo Diseño Ing. 2001, 17, 305–316. [Google Scholar]
- Siadat, H.; Najafi, H.; Alikhasi, M.; Falahi, B.; Beyabanaki, E.; Zayeri, F. Effect of Lateral Oblique Cyclic Loading on Microleakage and Screw Loosening of Implants with Different Connections. J. Dent. Res. Dent. Clin. Dent. Prospects 2018, 12, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Cicciù, M.; D’Amico, C.; Mauceri, R.; Oteri, G.; Cervino, G. Finite Element Method and Von Mises Investigation on Bone Response to Dynamic Stress with a Novel Conical Dental Implant Connection. BioMed Res. Int. 2020, 2020, 2976067. [Google Scholar] [CrossRef] [PubMed]
- Prados-Privado, M.; Gehrke, S.A.; Rojo, R.; Prados-Frutos, J.C. Complete Mechanical Characterization of an External Hexagonal Implant Connection: In Vitro Study, 3D FEM, and Probabilistic Fatigue. Med. Biol. Eng. Comput. 2018, 56, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.-F.; Yao, K.-T.; Kao, H.-C.; Hsu, M.-L. Effects of Axial Loading on the Pull-out Force of Conical Connection Abutments in Ankylos Implant. Int. J. Oral Maxillofac. Implant. 2018, 33, 788–794. [Google Scholar] [CrossRef]
- Devaraju, K.; Rao, S.; Joseph, J.; Raju Kurapati, S. Comparison of Biomechanical Properties of Different Implant-Abutment Connections. Indian J. Dent. Sci. 2018, 10, 180. [Google Scholar] [CrossRef]
- Kanneganti, K.; Vinnakota, D.; Pottem, S.; Pulagam, M. Comparative Effect of Implant-Abutment Connections, Abutment Angulations, and Screw Lengths on Preloaded Abutment Screw Using Three-Dimensional Finite Element Analysis: An in Vitro Study. J. Indian Prosthodont. Soc. 2018, 18, 161. [Google Scholar] [CrossRef]
- Massoumi, F.; Taheri, M.; Mohammadi, A.; Amelirad, O. Evaluation of the Effect of Buccolingual and Apicocoronal Positions of Dental Implants on Stress and Strain in Alveolar Bone by Finite Element Analysis. J. Dent. Tehran Iran 2018, 15, 10–19. [Google Scholar]
- Lehmann, R.B.; Elias, C.N.; Zucareli, M.A. Influence of external geometry of Morse dental implant on stress distribution. Dent. Press Implantol. 2012, 6, 35–43. [Google Scholar]
- Krennmair, G.; Seemann, R.; Schmidinger, S.; Ewers, R.; Piehslinger, E. Clinical Outcome of Root-Shaped Dental Implants of Various Diameters: 5-Year Results. Int. J. Oral Maxillofac. Implant. 2010, 25, 357–366. [Google Scholar]
- Pereira, J.; Morsch, C.; Henriques, B.; Nascimento, R.; Benfatti, C.; Silva, F.; López-López, J.; Souza, J. Removal Torque and Biofilm Accumulation at Two Dental Implant–Abutment Joints After Fatigue. Int. J. Oral Maxillofac. Implant. 2016, 31, 813–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sütpideler, M.; Eckert, S.E.; Zobitz, M.; An, K.-N. Finite Element Analysis of Effect of Prosthesis Height, Angle of Force Application, and Implant Offset on Supporting Bone. Int. J. Oral Maxillofac. Implant. 2004, 19, 819–825. [Google Scholar]
- Kitamura, E.; Stegaroiu, R.; Nomura, S.; Miyakawa, O. Influence of Marginal Bone Resorption on Stress around an Implant—A Three-Dimensional Finite Element Analysis. J. Oral Rehabil. 2005, 32, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Magomedov, I.A.; Khaliev, M.S.-U.; Elmurzaev, A.A. Application of Finite Element Analysis in Medicine. J. Phys. Conf. Ser. 2020, 1679, 022057. [Google Scholar] [CrossRef]
- Yao, K.-T.; Chen, C.-S.; Cheng, C.-K.; Fang, H.-W.; Huang, C.-H.; Kao, H.-C.; Hsu, M.-L. Optimization of the Conical Angle Design in Conical Implant–Abutment Connections: A Pilot Study Based on the Finite Element Method. J. Oral Implantol. 2018, 44, 26–35. [Google Scholar] [CrossRef]
Material | Young’s Modul (MPa) | Poisson’s Ratio (v) | Reference(s) |
---|---|---|---|
Porcelain | 68,900 | 0.28 | De Carvalho Formiga et al. [9] |
Titanium Alloy (Ti–6Al–4V) | 110,000 | 0.35 | De Carvalho Formiga et al. [9]; Yao, K.-T. et al. [61] |
Cancellous Bone | 1370 | 0.30 | De Carvalho Formiga et al. [9]; Yao, K.-T. et al. |
Cortical Bone | 13,700 | 0.30 | Yao K-T et al. [61] |
Component | Crown | Abutment | ||||
---|---|---|---|---|---|---|
Forces | 150 N | 250 N | 350 N | 150 N | 250 N | 350 N |
EH | 173 | 288 | 404 | 255 | 375 | 525 |
IH | 48.9 | 81.5 | 114 | 58.2 | 97 | 136 |
MT | 40.7 | 67.8 | 95 | 94 | 157 | 219 |
CC | 18.7 | 31.1 | 43.5 | 4.3 | 7.17 | 10 |
CT | 18.7 | 31.1 | 43.5 | 4.3 | 7.21 | 10.1 |
Component | Implant | Bone | ||||
Forces | 150 N | 250 N | 350 N | 150 N | 250 N | 350 N |
EH | 75 | 125 | 175 | 75.1 | 125 | 175 |
IH | 11.9 | 19.8 | 27.8 | 0.26 | 0.44 | 0.617 |
MT | 1.54 | 2.56 | 3.59 | 0.002 | 0.003 | 0.0053 |
CC | 0.19 | 0.33 | 0.465 | 0.41 | 0.68 | 0.964 |
CT | 0.63 | 1.06 | 1.49 | 0.3 | 0.5 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angeles Maslucan, R.; Dominguez, J.A. A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal. Materials 2022, 15, 3680. https://doi.org/10.3390/ma15103680
Angeles Maslucan R, Dominguez JA. A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal. Materials. 2022; 15(10):3680. https://doi.org/10.3390/ma15103680
Chicago/Turabian StyleAngeles Maslucan, Romy, and John Alexis Dominguez. 2022. "A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal" Materials 15, no. 10: 3680. https://doi.org/10.3390/ma15103680
APA StyleAngeles Maslucan, R., & Dominguez, J. A. (2022). A Finite Element Stress Analysis of a Concical Triangular Connection in Implants: A New Proposal. Materials, 15(10), 3680. https://doi.org/10.3390/ma15103680