Fabrication and Sensing Application of Phase Shifted Bragg Grating Sensors
Abstract
:1. Introduction
2. Analysis of Spectral Characteristics
3. Phase Shifted Fiber Bragg Grating Sensors
3.1. Phase Shift Introduced by Special Structure or Materials
3.2. PS-FBG Sensors Fabricated by Femtosecond Laser Micromachining Technology
3.3. PS-FBG Sensors with High Birefringence
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Sun, X.; Du, H.; Dong, X.; Hu, Y.; Duan, J. Simultaneous Curvature and Temperature Sensing Based on a Novel Mach-Zehnder Interferometer. Photonic Sens. 2020, 10, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Du, H.; Sun, X.; Duan, J. Simultaneous Strain and Temperature Sensor Based on a Fiber Mach-Zehnder Interferometer Coated with Pt by Iron Sputtering Technology. Materials 2018, 11, 1535. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chang, Z.; Zeng, L.; Dong, X.; Hu, Y.; Duan, J. Wavelength tunable fiber Bragg gratings fabricated by stress annealing assisted femtosecond laser direct writing. Opt. Fiber Technol. 2021, 61, 102427. [Google Scholar] [CrossRef]
- Shang, S.; Zhang, Q.; Wang, H.; Li, Y. Facile fabrication of magnetically responsive PDMS fiber for camouflage. J. Colloid Interface Sci. 2016, 483, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Lu, Y.; Duan, L.; Yao, J. A Refractive Index Sensor Based on PCF with Ultra-Wide Detection Range. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 5600108. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Wang, M.; Yu, P. Refractive index sensing and filtering characteristics of side-polished and gold-coated photonic crystal fiber with a offset core. Opt. Laser Technol. 2021, 136, 106759. [Google Scholar] [CrossRef]
- Liou, J.; Yu, C. All-fiber Mach-Zehnder interferometer based on two liquid infiltrations in a photonic crystal fiber. Opt. Express 2015, 23, 6946. [Google Scholar] [CrossRef]
- Lobo Ribeiro, A.B.; Silva, S.F.O.; Frazão, O.; Santos, J.L. Bi-core optical fiber for sensing of temperature, strain and torsion. Meas. Sci. Technol. 2019, 30, 035104. [Google Scholar] [CrossRef]
- Zou, H.; Liang, D.; Zeng, J. Dynamic strain measurement using two wavelength-matched fiber Bragg grating sensors interrogated by a cascaded long-period fiber grating. Opt. Lasers Eng. 2012, 50, 199–203. [Google Scholar] [CrossRef]
- Melo, L.; Burton, G.; Kubik, P.; Wild, P. Refractive index sensor based on inline Mach-Zehnder interferometer coated with hafnium oxide by atomic layer deposition. Sens. Actuators B Chem. 2016, 236, 537–545. [Google Scholar] [CrossRef]
- Guo, C.; Zou, J.; Sun, K. Analysis on Structural Health Monitoring System of High-Pile Wharf Based on Optical Fiber Sensor. J. Phys. Conf. Ser. 2021, 1881, 42018. [Google Scholar] [CrossRef]
- Fienga, F.; Marrazzo, V.R.; Spedding, S.B.; Szillasi, Z.; Beni, N.; Irace, A.; Zeuner, W.; Ball, A.; Vaccaro, V.G.; Salvant, B.; et al. Fiber Bragg Grating Sensors as Innovative Monitoring Tool for Beam Induced RF Heating on LHC Beam Pipe. J. Lightwave Technol. 2021, 39, 4145–4150. [Google Scholar] [CrossRef]
- Fan, H.; Chen, L.; Bao, X. Fiber-Optic Ultrasound Transmitter Based on Multi-Mode Interference in Curved Adhesive Waveguide. IEEE Photonics Technol. Lett. 2020, 32, 325–328. [Google Scholar] [CrossRef]
- Bednarska, K.; Sobotka, P.; Wolinski, T.R.; Zakrecka, O.; Pomianek, W.; Nocon, A.; Lesiak, P. Hybrid Fiber Optic Sensor Systems in Structural Health Monitoring in Aircraft Structures. Materials 2020, 13, 2249. [Google Scholar] [CrossRef]
- Marsili, R.; Rossi, G.; Speranzini, E. Fibre Bragg Gratings for the Monitoring of Wooden Structures. Materials 2017, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Markvart, A.A.; Liokumovich, L.B.; Medvedev, I.O.; Ushakov, N.A. Smartphone-Based Interrogation of a Chirped FBG Strain Sensor Inscribed in a Multimode Fiber. J. Lightwave Technol. 2021, 39, 282–289. [Google Scholar] [CrossRef]
- Xu, Y.; Duan, C.; Li, Z.; Tan, T.; Qiu, C.; Xiao, G.; Tian, Y.; Zhang, W.; Zhang, J. Accuracy Improvement of Residual Stress Measurement by Chirp Compensation of FBG. IEEE Trans. Instrum. Meas. 2021, 70, 1003307. [Google Scholar] [CrossRef]
- Korganbayev, S.; Min, R.; Jelbuldina, M.; Hu, X.; Caucheteur, C.; Bang, O.; Ortega, B.; Marques, C.; Tosi, D. Thermal Profile Detection Through High-Sensitivity Fiber Optic Chirped Bragg Grating on Microstructured PMMA Fiber. J. Lightwave Technol. 2018, 36, 4723–4729. [Google Scholar] [CrossRef] [Green Version]
- Korganbayev, S.; Ayupova, T.; Sypabekova, M.; Bekmurzayeva, A.; Shaimerdenova, M.; Dukenbayev, K.; Molardi, C.; Tosi, D. Partially etched chirped fiber Bragg grating (pECFBG) for joint temperature, thermal profile, and refractive index detection. Opt. Express 2018, 26, 18708–18720. [Google Scholar] [CrossRef]
- Min, R.; Pereira, L.; Paixao, T.; Woyessa, G.; Hu, X.; Antunes, P.; Andre, P.; Bang, O.; Pinto, J.; Ortega, B.; et al. Chirped POF Bragg grating production utilizing UV cure adhesive coating for multiparameter sensing. Opt. Fiber Technol. 2021, 65, 102593. [Google Scholar] [CrossRef]
- Wang, F.; Wang, B.; Zhang, X.; Lu, M.; Zhang, Y.; Sun, C.; Peng, W. High Sensitivity Humidity Detection Based on Functional GO/MWCNTs Hybrid Nano-Materials Coated Titled Fiber Bragg Grating. Nanomaterials 2021, 11, 1134. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Wang, C.; Wang, Y.; Sahoo, N.; Zhang, L. 2D bending (curvature) recognition based on a combination of a TFBG and an orthogonal TFBG pair. Appl. Phys. Express 2019, 12, 72009. [Google Scholar] [CrossRef]
- Wang, F.; Lu, M.; Yuan, H.; Zhang, Y.; Ji, W.; Sun, C.; Peng, W. pM Level and Large Dynamic Range Glucose Detection Based on a Sandwich Type Plasmonic Fiber Sensor. J. Lightwave Technol. 2021, 39, 3882–3889. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Lu, M.; Du, Y.; Chen, M.; Meng, S.; Ji, W.; Sun, C.; Peng, W. Near-infrared band Gold nanoparticles-Au film “hot spot” model based label-free ultratrace lead (II) ions detection via fiber SPR DNAzyme biosensor. Sens. Actuators B Chem. 2021, 337, 129816. [Google Scholar] [CrossRef]
- Xia, L.; Shum, P.; Lu, C. Phase-shifted bandpass filter fabrication through CO2 laser irradiation. Opt. Express 2005, 13, 5878–5882. [Google Scholar] [CrossRef]
- Shao, Y.; Han, X.; Li, M.; Zhao, M. RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG. Opt. Lett. 2018, 43, 1199–1202. [Google Scholar] [CrossRef]
- Dwivedi, K.M.; Osuch, T.; Trivedi, G. High sensitive and large dynamic range quasi-distributed sensing system based on slow-light π-phase-shifted fiber Bragg gratings. Opto-Electron. Rev. 2019, 27, 233–240. [Google Scholar] [CrossRef]
- Tremblay, G.; Sheng, Y. Effects of the phase shift split on phase-shifted fiber Bragg gratings. J. Opt. Soc. Am. B Opt. Phys. 2006, 23, 1511–1516. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Q.; He, Z. High-Resolution Simultaneous Measurement of Strain and Temperature Using π-Phase-Shifted FBG in Polarization Maintaining Fiber. J. Lightwave Technol. 2017, 35, 4838–4844. [Google Scholar] [CrossRef]
- Zhang, A.; Hao, L.; Geng, B.; Li, D. Investigation of narrow band random fiber ring laser based on random phase-shift Bragg grating. Opt. Laser Technol. 2019, 116, 1–6. [Google Scholar] [CrossRef]
- Zha, Y.; Xu, Z.; Xiao, P.; Feng, F.; Ran, Y.; Guan, B. Phase-shifted type-IIa fiber Bragg gratings for high-temperature laser applications. Opt. Express 2019, 27, 4346–4353. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Chen, D.; Fang, Z.; Wang, D.; Zhang, X.; Wei, F.; Yang, F.; Ying, K.; Cai, H. Photothermal effects in phase shifted FBG with varied light wavelength and intensity. Opt. Express 2016, 24, 25370–25379. [Google Scholar] [CrossRef]
- Hefferman, G.; Chen, Z.; Yuan, L.; Wei, T. Phase-Shifted Terahertz Fiber Bragg Grating for Strain Sensing With Large Dynamic Range. IEEE Photonics Technol. Lett. 2015, 27, 1649–1652. [Google Scholar] [CrossRef]
- Wang, Y.; Li, N.; Huang, X.; Wang, M. Fiber optic transverse load sensor based on polarization properties of π-phase-shifted fiber Bragg grating. Opt. Commun. 2015, 342, 152–156. [Google Scholar] [CrossRef]
- Guo, J.; Yang, C. Highly Stabilized Phase-Shifted Fiber Bragg Grating Sensing System for Ultrasonic Detection. IEEE Photonics Technol. Lett. 2015, 27, 848–851. [Google Scholar] [CrossRef]
- Falah, A.A.S.Y.; Mokhtar, M.R.; Yusoff, Z.; Ibsen, M. Reconfigurable Phase-Shifted Fiber Bragg Grating Using Localized Micro-Strain. IEEE Photonics Technol. Lett. 2016, 28, 951–954. [Google Scholar]
- Li, S.Y.; Ngo, N.Q.; Tjin, S.C.; Shum, P.; Zhang, J. Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating. Opt. Lett. 2004, 29, 29–31. [Google Scholar] [CrossRef]
- Ahuja, A.K.; Steinvurzel, P.E.; Eggleton, B.J.; Rogers, J.A. Tunable single phase-shifted and superstructure gratings using microfabricated on-fiber thin film heaters. Opt. Commun. 2000, 184, 119–125. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Painchaud, Y. Multi-channel notch filter based on a phase-shift phase-only-sampled fiber Bragg grating. Opt. Express 2008, 16, 19388–19394. [Google Scholar] [CrossRef]
- Loh, W.H.; Cole, M.J.; Zervas, M.N.; Barcelos, S.; Laming, R.I. Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique. Opt. Lett. 1995, 20, 2051–2053. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Liu, X.; Culshaw, B.; Liao, Y.; Wang, A.; Bao, X.; Fan, X. Phase shifted FBG fabricated with arc discharge erasing technique. In Proceedings of the SPIE SPIE/COS Photonics Asia, Beijing, China, 30 November 2012. [Google Scholar]
- Du, Y.; Chen, T.; Zhang, Y.; Wang, R.; Cao, H.; Li, K. Fabrication of Phase-Shifted Fiber Bragg Grating by Femtosecond Laser Shield Method. IEEE Photonics Technol. Lett. 2017, 29, 2143–2146. [Google Scholar] [CrossRef]
- Wolf, A.; Dostovalov, A.; Skvortsov, M.; Raspopin, K.; Parygin, A.; Babin, S. Femtosecond-pulse inscription of fiber Bragg gratings with single or multiple phase-shifts in the structure. Opt. Laser Technol. 2018, 101, 202–207. [Google Scholar] [CrossRef]
- Burgmeier, J.; Waltermann, C.; Flachenecker, G.; Schade, W. Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses. Opt. Lett. 2014, 39, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, G.P.; Bobeck, A.H. Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE J. Quantum Electron. 1988, 24, 2407–2414. [Google Scholar] [CrossRef]
- Agrawal, G.P.; Radic, S. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. IEEE Photonics Technol. Lett. 1994, 6, 995–997. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, C.; Li, D.; Yang, D.; Zhao, J. Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser. Meas. Sci. Technol. 2018, 29, 45101. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, Y.; Zhang, Z.; Liao, C.; Wang, Y.; Xu, L.; He, J.; Wang, C.; Li, Z.; Yang, T. Taper Embedded Phase-Shifted Fiber Bragg Grating Fabricated by Femtosecond Laser Line-by-Line Inscription. IEEE Photonics J. 2018, 10, 7500208. [Google Scholar] [CrossRef]
- Bao, L.; Dong, X.; Zhang, S.; Shen, C.; Shum, P. Magnetic Field Sensor Based on Magnetic Fluid-Infiltrated Phase-Shifted Fiber Bragg Grating. IEEE Sens. J. 2018, 18, 4008–4012. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Wang, Y.; Zhang, T.; Shao, M.; Yu, D.; Fu, H.; Jia, Z. Integrated optic-fiber sensor based on enclosed EFPI and structural phase-shift for discriminating measurement of temperature, pressure and RI. Opt. Laser Technol. 2020, 126, 106112. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, Y.; Xu, J.; Yang, D.; Li, D.; Wang, M.; Zhao, J. Phase-shifted fiber Bragg grating inscription by fusion splicing technique and femtosecond laser. Opt. Lasers Eng. 2016, 86, 236–241. [Google Scholar] [CrossRef]
- Abrishamian, F.; Dragomir, N.; Morishita, K. Refractive index profile changes caused by arc discharge in long-period fiber gratings fabricated by a point-by-point method. Appl. Opt. 2012, 51, 8271–8276. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Du, L.; Xu, Z.; Jiang, Y.; Xu, J.; Wang, M.; Bai, Y.; Wang, H. Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid. Appl. Phys. Lett. 2014, 104, 061903. [Google Scholar] [CrossRef]
- Lin, W.; Miao, Y.; Zhang, H.; Liu, B.; Liu, Y.; Song, B.; Wu, J. Two-Dimensional Magnetic Field Vector Sensor Based on Tilted Fiber Bragg Grating and Magnetic Fluid. J. Lightwave Technol. 2013, 31, 2599–2605. [Google Scholar] [CrossRef]
- Jia, Z.; Pu, S.; Rao, J.; Zhao, Y.; Li, Y.; Yao, T. Temperature self-compensative all-fiber magnetic field sensing structure based on no-core fiber cascaded with fiber Bragg gratings. Opt. Lasers Eng. 2019, 119, 26–29. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, X.; Zhang, L.; Hu, Y.; Duan, J. High sensitivity magnetic field sensor based on a Mach-Zehnder interferometer and magnetic fluid. Optik 2022, 249, 168234. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Q.; Yan, W.; Xu, M.; Liu, T. Magnetic Field Sensing Based on a Ferrofluid-Coated Multimode Interferometer in a Fiber-Loop Ring-Down Cavity. IEEE Sens. J. 2018, 18, 3206–3210. [Google Scholar] [CrossRef]
- Lv, R.; Qian, J.; Zhao, Y. Magnetic field sensor based on the magnetic-fluid-clad combined with singlemode-multimode-singlemode fiber and large core-offset splicing structure. Meas. Sci. Technol. 2018, 29, 35204. [Google Scholar] [CrossRef]
- Bhardwaj, V.; Singh, V.K. A novel use of etched multi-mode fibre as magnetic field sensor. IET Optoelectron. 2017, 11, 248–252. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, X.; Chang, Z.; Hu, Y.; Duan, J. Tunable phase-shifted fiber Bragg grating based on a microchannel fabricated by a femtosecond laser. Chin. Opt. Lett. 2021, 19, 30602. [Google Scholar] [CrossRef]
- Liao, C.; Xu, L.; Wang, C.; Wang, D.; Wang, Y.; Wang, Q.; Yang, K.; Li, Z.; Zhong, X.; Zhou, J.; et al. Tunable phase-shifted fiber Bragg grating based on femtosecond laser fabricated in-grating bubble. Opt. Lett. 2013, 38, 4473–4476. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Liu, S.; Zhao, Y.; Chen, Y.; Yang, K.; Guo, K.; He, J.; Liao, C.; Wang, Y. Phase-shifted fiber Bragg grating modulated by a hollow cavity for measuring gas pressure. Opt. Lett. 2020, 45, 507. [Google Scholar] [CrossRef]
- Huang, B.; Shu, X. Ultra-compact strain- and temperature-insensitive torsion sensor based on a line-by-line inscribed phase-shifted FBG. Opt. Express 2016, 24, 17670–17679. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zeng, L.; Du, H.; Dong, X.; Chang, Z.; Hu, Y.; Duan, J. Phase-shifted gratings fabricated with femtosecond laser by overlapped two types of fiber Bragg gratings. Opt. Laser Technol. 2020, 124, 105969. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Zeng, L.; Hu, Y.; Duan, J. Fabrication and Sensing Application of Phase Shifted Bragg Grating Sensors. Materials 2022, 15, 3720. https://doi.org/10.3390/ma15103720
Sun X, Zeng L, Hu Y, Duan J. Fabrication and Sensing Application of Phase Shifted Bragg Grating Sensors. Materials. 2022; 15(10):3720. https://doi.org/10.3390/ma15103720
Chicago/Turabian StyleSun, Xiaoyan, Li Zeng, Youwang Hu, and Ji’an Duan. 2022. "Fabrication and Sensing Application of Phase Shifted Bragg Grating Sensors" Materials 15, no. 10: 3720. https://doi.org/10.3390/ma15103720
APA StyleSun, X., Zeng, L., Hu, Y., & Duan, J. (2022). Fabrication and Sensing Application of Phase Shifted Bragg Grating Sensors. Materials, 15(10), 3720. https://doi.org/10.3390/ma15103720