Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models
Abstract
:1. Introduction
2. Research Methodology
2.1. Experimental Database
2.2. Prediction Modeling
2.2.1. Adaptive Neurofuzzy Inference System (ANFIS) Model
2.2.2. Gene Expression Programming (GEP) Model
2.2.3. Gradient Boosting Tree (GBT) Model
3. Results and Discussions
3.1. Predictive Performance and Validation
3.1.1. Performance of Adaptive Neurofuzzy Inference System Model
3.1.2. Performance of Gene Expression Programming Model
3.1.3. Performance of Gradient Boosting Tree Model
3.2. Comparison of the Models
Comparison with the Literature
3.3. Parametric and Sensitivity Analysis
4. Conclusions
- During model training, it was determined that the optimum results of the ANFIS models were achieved by designing a subclustering hybrid FIS with an aspect ratio of 0.5. While assessing the effect of various genetic parameters on the performance of the developed GEP models, it was initially evaluated that an increase in the number of chromosomes, genes, and head size from 30–50 to 3–4 and 8–10 reduced the performance; however, further increases yielded optimum results, and maximum correlation and maximum error indices were achieved for 200 chromosomes, 5 genes, and head size 10.
- For GBT modeling, the learning rate, number of trees, and maximal depth were varied from their lower bounds of 0.001, 30, and 2, respectively. These setting parameters were slowly changed until the best results were obtained for learning rate 0.1, 150 trees, and maximal depth 7.
- All three models exhibited a strong agreement between the input attributes and the output variable: ANFIS yielded R = 0.94, MAE = 3.93 MPa, and RMSE = 5.4 MPa; GEP resulted R= 0.90, MAE = 5.74, and RMSE = 7.22 MPa; and the GBT model gave the best performance in the form of the highest correlation (R = 0.95, MAE = 3.07, and RMSE = 4.80). This reflects the order of accuracy of the developed models: GBT > ANFIS > GEP. The GBT model was also compared with the existing models in the literature, suggesting that GBT is a more accurate model.
- The parametric study showed that the compressive strength increased linearly with the increase in the amount of cement at a constant amount of water equaling 182.98 kg/m3. An increase in the amount of GGBFS beyond 250 kg/m3 had no significant effect on the compressive strength at a constant input cement quantity of 276 kg/m3, fly ash of 62.81 kg/m3, and 182 kg/m3 of water. This suggests that the optimum ratio of GGBFS as 0.42 to binder content at a water-to-binder ratio of 0.31. The study also concluded that increasing the superplasticizer beyond 2.9% of the binder content at a water-to-binder ratio of 0.44 has no significant impact on the compressive strength of concrete.
- The gain of compressive strength with the variation in aging of concrete depicts a much steeper slope of strength at the beginning, which almost becomes flat after 100 days. This observation confirms the validation of the developed GBT model, as the strength of concrete varies rapidly at the beginning. Moreover, the sensitivity analysis depicted the age of concrete as the most influential parameter contributing to compressive strength, followed by the addition of blast furnace slag and the quantity of coarse aggregates.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, K.-H.; Jung, Y.-B.; Cho, M.-S.; Tae, S.-H. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 2015, 103, 774–783. [Google Scholar] [CrossRef]
- Holger, W.; Ostermeyer, Y.; Salzer, C.; Escamilla, E.Z. Indicator based sustainability assessment tool for affordable housing construction technologies. Ecol. Indic. 2012, 18, 353–364. [Google Scholar]
- Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and carbon emissions. Mater. Struct. 2014, 47, 1055–1065. [Google Scholar] [CrossRef]
- Miller, S.A.; John, V.M.; Pacca, S.A.; Horvath, A. Carbon dioxide reduction potential in the global cement industry by 2050. Cem. Concr. Res. 2018, 114, 115–124. [Google Scholar] [CrossRef]
- Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. Cement technology roadmap shows how the path to achieve CO2 reductions up to 24% by 2050. World Business Council for Sustainable Development. 6 April 2018. Available online: http://119.78.100.173/C666/handle/2XK7JSWQ/105302 (accessed on 2 April 2022).
- CSI–Cement Sustainability Initiative. Global Cement Database on CO2 and Energy Information. 2009.
- Ribeiro, F.R.C.; Modolo, R.C.E.; Kulakowski, M.P.; Brehm, F.A.; Moraes, C.A.M.; Ferreira, V.M.; Mesquita, E.F.T.; de Azevedo, A.R.G.; Monteiro, S.N. Production of belite based clinker from ornamental stone processing sludge and calcium carbonate sludge with lower CO2 emissions. Materials 2022, 15, 2352. [Google Scholar] [CrossRef] [PubMed]
- Ahmed Ali, K.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. [Google Scholar] [CrossRef]
- Winters, D.; Boakye, K.; Simske, S. Toward carbon-neutral concrete through biochar–cement–calcium carbonate composites: A critical review. Sustainability 2022, 14, 4633. [Google Scholar] [CrossRef]
- Poudyal, L.; Adhikari, K. Environmental sustainability in cement industry: An integrated approach for green and economical cement production. Resour. Environ. Sustain. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Salami, B.A.; Maslehuddin, M.; Mohammed, I. Mechanical properties and durability characteristics of scc incorporating crushed limestone powder. J. Sustain. Cem. Based Mater. 2015, 4, 176–193. [Google Scholar] [CrossRef]
- Ankur, N.; Singh, N. Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111361. [Google Scholar] [CrossRef]
- Gençel, O.; Karadag, O.; Oren, O.H.; Bilir, T. Steel slag and its applications in cement and concrete technology: A review. Constr. Build. Mater. 2021, 283, 122783. [Google Scholar] [CrossRef]
- Mehta, A.; Ashish, D.K. Silica fume and waste glass in cement concrete production: A review. J. Build. Eng. 2020, 29, 100888. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Wang, K.-T.; Tang, Q.; Nzeukou, A.; Billong, N.; Melo, U.C.; Cui, X.-M. Review on the use of volcanic ashes for engineering applications. Resour. Conserv. Recycl. 2018, 137, 177–190. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Tayeh, B.A.; Alyousef, R.; Alabduljabbar, H.; Alaskar, A. Recycling of rice husk waste for a sustainable concrete: A critical review. J. Clean. Prod. 2021, 312, 127734. [Google Scholar] [CrossRef]
- Raheem, A.A.; Ikotun, B.D. Incorporation of agricultural residues as partial substitution for cement in concrete and mortar—A review. J. Build. Eng. 2020, 31, 101428. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.-C.; Mo, K.H.; Shi, C. A critical review of waste glass powder—Multiple roles of utilization in cement-based materials and construction products. J. Environ. Manag. 2019, 242, 440–449. [Google Scholar] [CrossRef]
- Norhasri, M.M.; Hamidah, M.; Fadzil, A.M. Applications of using nano material in concrete: A review. Constr. Build. Mater. 2017, 133, 91–97. [Google Scholar] [CrossRef]
- Giergiczny, Z. Fly ash and slag. Cem. Concr. Res. 2019, 124, 105826. [Google Scholar] [CrossRef]
- Akpinar, P.; Khashman, A. Intelligent classification system for concrete compressive strength. Procedia Comput. Sci. 2017, 120, 712–718. [Google Scholar] [CrossRef]
- Jamal, A.; Al-Ahmadi, H.M.; Butt, F.M.; Iqbal, M.; Almoshaogeh, M.; Ali, S. Metaheuristics for Traffic Control and Optimization: Current Challenges and Prospects; IntechOpen: London, UK, 2021. [Google Scholar]
- Sadowski, Ł.; Piechówka-Mielnik, M.; Widziszowski, T.; Gardynik, A.; Mackiewicz, S. Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. J. Clean. Prod. 2019, 212, 727–740. Available online: https://www.sciencedirect.com/science/article/pii/S0959652618337612 (accessed on 2 April 2022). [CrossRef]
- Singh, P.; Bhardwaj, S.; Dixit, S.; Shaw, R.N.; Ghosh, A. Development of prediction models to determine compressive strength and workability of sustainable concrete with ann. In Innovations in Electrical and Electronic Engineering; Mekhilef, S., Favorskaya, M., Pandey, R.K., Shaw, R.N., Eds.; Springer: Singapore, 2021; pp. 753–769. [Google Scholar]
- Bui, D.-K.; Nguyen, T.; Chou, J.-S.; Nguyen-Xuan, H.; Ngo, T.D. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr. Build. Mater. 2018, 180, 320–333. [Google Scholar] [CrossRef]
- Zarandi, M.F.; Türksen, I.B.; Sobhani, J.; Ramezanianpour, A.A. Fuzzy polynomial neural networks for approximation of the compressive strength of concrete. Appl. Soft Comput. 2008, 8, 488–498. [Google Scholar] [CrossRef]
- Chou, J.-S.; Chiu, C.-K.; Farfoura, M.; Al-Taharwa, I. Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques. J. Comput. Civ. Eng. 2011, 25, 242–253. [Google Scholar] [CrossRef]
- Chou, J.-S.; Pham, A.-D. Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength. Constr. Build. Mater. 2013, 49, 554–563. Available online: https://www.sciencedirect.com/science/article/pii/S0950061813008088 (accessed on 2 April 2022). [CrossRef]
- Deepa, C.; SathiyaKumari, K.; Sudha, V.P. Prediction of the compressive strength of high performance concrete mix using tree based modeling. Int. J. Comput. Appl. 2010, 6, 18–24. [Google Scholar] [CrossRef]
- Erdal, H.I.; Karakurt, O.; Namli, E. High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform. Eng. Appl. Artif. Intell. 2013, 26, 1246–1254. [Google Scholar] [CrossRef]
- Yeh, I.-C.; Lien, L.-C. Knowledge discovery of concrete material using genetic operation trees. Expert Syst. Appl. 2009, 36, 5807–5812. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Kumar, D.; Samui, P.; Hu, J.W.; Kim, D. Compressive strength prediction of high-performance concrete using gradient tree boosting machine. Constr. Build. Mater. 2020, 264, 120198. Available online: https://www.sciencedirect.com/science/article/pii/S0950061820322030 (accessed on 10 April 2022). [CrossRef]
- Mousavi, S.M.; Aminian, P.; Gandomi, A.H.; Alavi, A.H.; Bolandi, H. A new predictive model for compressive strength of hpc using gene expression programming. Adv. Eng. Softw. 2012, 45, 105–114. [Google Scholar] [CrossRef]
- Chen, W.; Panahi, M.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Panahi, S.; Li, S.; Jaafari, A.; Ahmad, B.B. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena 2019, 172, 212–231. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.-N.; Ji, X. Prediction of concrete compressive strength: Research on hybrid models genetic based algorithms and anfis. Adv. Eng. Softw. 2014, 67, 156–163. Available online: https://www.sciencedirect.com/science/article/pii/S0965997813001580 (accessed on 12 April 2022). [CrossRef]
- Nguyen, T.; Kashani, A.; Ngo, T.; Bordas, S. Deep neural network with high-order neuron for the prediction of foamed concrete strength. Comput. Aided Civil. Infrastruct. Eng. 2019, 34, 316–332. [Google Scholar] [CrossRef]
- Jang, J.-S. Anfis: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 1, 116–132. [Google Scholar] [CrossRef]
- Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems. arXiv 2001, arXiv:Cs/0102027. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Faradonbeh, R.S.; Hasanipanah, M.; Amnieh, H.B.; Armaghani, D.J.; Monjezi, M. Development of gp and gep models to estimate an environmental issue induced by blasting operation. Environ. Monit. Assess. 2018, 190, 351. [Google Scholar] [CrossRef]
- Sakino, K.; Nakahara, H.; Morino, S.; Nishiyama, I. Behavior of centrally loaded concrete-filled steel-tube short columns. J. Struct. Eng. 2004, 130, 180–188. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Alavi, A.H. A new multi-gene genetic programming approach to nonlinear system modeling. Part I: Materials and structural engineering problems. Neural Comput. Appl. 2012, 21, 171–187. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Roke, D.A. Assessment of artificial neural network and genetic programming as predictive tools. Adv. Eng. Softw. 2015, 88, 63–72. [Google Scholar] [CrossRef]
- Iqbal, M.; Zhang, D.; Jalal, F.E.; Javed, M.F. Computational ai prediction models for residual tensile strength of gfrp bars aged in the alkaline concrete environment. Ocean. Eng. 2021, 232, 109134. Available online: https://www.sciencedirect.com/science/article/pii/S0029801821005680 (accessed on 15 April 2022). [CrossRef]
- Jalal, F.E.; Xu, Y.; Li, X.; Jamhiri, B.; Iqbal, M. Fractal approach in expansive clay-based materials with special focus on compacted gmz bentonite in nuclear waste disposal: A systematic review. Environ. Sci. Pollut. Res. 2021, 28, 43287–43314. [Google Scholar] [CrossRef] [PubMed]
- Saadat, M.; Bayat, M. Prediction of the unconfined compressive strength of stabilised soil by adaptive neuro fuzzy inference system (anfis) and non-linear regression (nlr). Geomech. Geoengin. 2019, 17, 80–91. [Google Scholar] [CrossRef]
- Madandoust, R.; Bungey, J.H.; Ghavidel, R. Prediction of the concrete compressive strength by means of core testing using gmdh-type neural network and anfis models. Comput. Mater. Sci. 2012, 51, 261–272. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Asteris, P.G. A comparative study of ann and anfis models for the prediction of cement-based mortar materials compressive strength. Neural Comput. Appl. 2021, 33, 4501–4532. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Liu, Q.-F.; Azim, I.; Zhu, X.; Yang, J.; Javed, M.F.; Rauf, M. Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. J. Hazard. Mater. 2020, 384, 121322. [Google Scholar] [CrossRef]
- Ferreira, C. Gene expression programming in problem solving. In Soft Computing and Industry; Springer: London, UK, 2002; pp. 635–653. [Google Scholar]
- Shahmansouri, A.A.; Bengar, H.A.; Ghanbari, S. Compressive strength prediction of eco-efficient ggbs-based geopolymer concrete using gep method. J. Build. Eng. 2020, 31, 101326. [Google Scholar] [CrossRef]
- Shah, M.I.; Javed, M.F.; Abunama, T. Proposed formulation of surface water quality and modelling using gene expression, machine learning, and regression techniques. Environ. Sci. Pollut. Res. 2020, 28, 13202–13220. [Google Scholar] [CrossRef]
- Khan, M.I.; Sutanto, M.H.; Khan, K.; Iqbal, M.; Napiah, M.B.; Zoorob, S.E.; Klemeš, J.J.; Bokhari, A.; Rafiq, W. Effective use of recycled waste pet in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network. J. Clean. Prod. 2022, 340, 130840. Available online: https://www.sciencedirect.com/science/article/pii/S0959652622004784 (accessed on 17 April 2022). [CrossRef]
- Salami, B.A.; Olayiwola, T.; Oyehan, T.A.; Raji, I.A. Data-driven model for ternary-blend concrete compressive strength prediction using machine learning approach. Constr. Build. Mater. 2021, 301, 124152. [Google Scholar] [CrossRef]
- Farooq, F.; Ahmed, W.; Akbar, A.; Aslam, F.; Alyousef, R. Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners. J. Clean. Prod. 2021, 292, 126032. Available online: https://www.sciencedirect.com/science/article/pii/S0959652621002523 (accessed on 17 April 2022). [CrossRef]
- Chou, J.-S.; Chong, W.K.; Bui, D.-K. Nature-inspired metaheuristic regression system: Programming and implementation for civil engineering applications. J. Comput. Civ. Eng. 2016, 30, 04016007. [Google Scholar] [CrossRef]
- Mohammed, A.; Burhan, L.; Ghafor, K.; Sarwar, W.; Mahmood, W. Artificial neural network (ann), m5p-tree, and regression analyses to predict the early age compression strength of concrete modified with dbc-21 and vk-98 polymers. Neural Comput. Appl. 2021, 33, 7851–7873. [Google Scholar] [CrossRef]
- Lübeck, A.; Gastaldini, A.; Barin, D.; Siqueira, H. Compressive strength and electrical properties of concrete with white portland cement and blast-furnace slag. Cem. Concr. Compos. 2012, 34, 392–399. [Google Scholar] [CrossRef]
- Shah, H.A.; Rehman, S.K.U.; Javed, M.F.; Iftikhar, Y. Prediction of compressive and splitting tensile strength of concrete with fly ash by using gene expression programming. Struct. Concr. 2021, 12, 361. [Google Scholar] [CrossRef]
- Donza, H.; Cabrera, O.; Irassar, E. High-strength concrete with different fine aggregate. Cem. Concr. Res. 2002, 32, 1755–1761. [Google Scholar] [CrossRef]
- Abdullahi, M. Effect of aggregate type on compressive strength of concrete. Int. J. Civ. Struct. Eng. 2012, 2, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Beshr, H.; Almusallam, A.; Maslehuddin, M. Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Constr. Build. Mater. 2003, 17, 97–103. [Google Scholar] [CrossRef]
- Wu, K.-R.; Chen, B.; Yao, W.; Zhang, D. Effect of coarse aggregate type on mechanical properties of high-performance concrete. Cem. Concr. Res. 2001, 31, 1421–1425. [Google Scholar] [CrossRef]
Parameter | Cement | Ground Granulated Blast Furnace Slag | Fine Aggregates | Water | Superplasticizer | Coarse Aggregates | Fly Ash | Age | Concrete Compressive Strength |
---|---|---|---|---|---|---|---|---|---|
Symbol | C | GGBFS | FAgg | W | SP | CA | FA | Age | |
Unit | (Kg/m3) | (Days) | (MPa) | ||||||
Minimum | 102 | 0 | 0 | 121.75 | 0 | 708 | 594 | 1 | 2.33 |
Maximum | 540 | 359.4 | 260 | 247 | 32.2 | 1145 | 992.6 | 365 | 82.60 |
Mean | 276.50 | 74.27 | 62.81 | 182.98 | 6.42 | 964.83 | 770.49 | 44.06 | 35.84 |
Median | 266 | 26 | 0 | 185.7 | 6.7 | 966.8 | 777.5 | 28 | 34.6737 |
SD | 103.47 | 84.25 | 71.58 | 21.71 | 5.80 | 82.79 | 79.37 | 60.44 | 16.10 |
Kurtosis | −0.4598 | −0.4845 | −0.9091 | 0.0736 | 1.4571 | −0.3953 | −0.1659 | 13.8117 | −0.1564 |
Skewness | 0.5292 | 0.7689 | 0.6058 | 0.0888 | 0.8361 | −0.1674 | −0.1890 | 3.4696 | 0.4224 |
C | BFS | FAgg | W | SP | CA | FA | Age | ||
---|---|---|---|---|---|---|---|---|---|
C | 1 | ||||||||
BFS | −0.27275 | 1 | |||||||
FA | −0.42043 | −0.28889 | 1 | ||||||
W | −0.08895 | 0.09949 | −0.15086 | 1 | |||||
SP | 0.06772 | 0.05283 | 0.35272 | −0.58810 | 1 | ||||
CA | −0.07299 | −0.26806 | −0.10552 | −0.27084 | −0.27498 | 1 | |||
FAgg | −0.18588 | −0.27598 | −0.00626 | −0.42471 | 0.19830 | −0.15341 | 1 | ||
Age | 0.09061 | −0.04422 | −0.16314 | 0.24202 | −0.19843 | 0.02328 | −0.13945 | 1 | |
0.48859 | 0.11985 | −0.06440 | −0.27821 | 0.35551 | −0.15485 | −0.16523 | 0.32386 | 1 |
Parameter | Setting |
---|---|
Sampling | |
Training record | 681 |
Validation/testing | 452 |
General | |
Type | Sugeno |
Number of nodes | 353 |
Number of linear parameters | 171 |
Number of nonlinear parameters | 304 |
Number of fuzzy rules | 19 |
And Method | prod |
Imp Method | prod |
Or Method | probor |
Agg Method | Sum |
Defuzzification Method | whatever |
FIS properties | |
FIS type | Sub clustering |
Training FIS method | hybrid |
Range of influence | 0.5 |
Squash factor | 1.25 |
Aspect ratio | 0.5 |
Error tolerance | 0 |
Epochs | 100 |
Parameter | Setting |
---|---|
Sampling | |
Training record | 681 |
Validation/testing | 452 |
General | |
Genes | 3, 4, 5 |
Number of chromosomes | 30, 50, 100, 200 |
Head size | 8, 10, 12 |
Linking function | Addition |
Function set | +, −, *, /, x(1/3), x2 |
Numerical constants | |
Constants per gene | 10 |
Data type | Floating number |
Upper bound | 10 |
Lower bound | −10 |
Genetic operators | |
Mutation rate | 0.00138 |
Fixed root mutation rate | 0.00068 |
Function insertion rate | 0.00206 |
Inversion rate | 0.00546 |
IS transposition rate | 0.00546 |
RIS transposition rate | 0.00546 |
Gene composition rate | 0.00277 |
Gene transposition rate | 0.00277 |
Variable Setting Parameters | Training Data Set | Validation Data Set | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model No. | Fitness Function | Number of Chromosomes, Head Size, Genes | Correlation (R) | RMSE | MAE | RSE | Correlation (R) | RMSE | MAE | RSE |
GEP1 | RMSE | 30, 8, 3 | 0.876 | 7.96 | 6.25 | 0.233 | 0.855 | 8.12 | 6.17 | 0.276 |
GEP2 | RMSE | 50, 10, 4 | 0.857 | 8.51 | 6.54 | 0.266 | 0.817 | 9.03 | 7.01 | 0.341 |
GEP3 | RMSE | 100, 10, 5 | 0.878 | 7.92 | 6.10 | 0.231 | 0.855 | 8.24 | 6.32 | 0.284 |
GEP4 | RMSE | 200, 12, 5 | 0.90 | 7.22 | 5.74 | 0.191 | 0.871 | 7.67 | 6.06 | 0.246 |
Model | Parameter | Value | Error Rate Optimization (%) |
---|---|---|---|
GBT | Number of trees, maximum depth, learning rate | 30, 2, 0.001 | 28.90 |
90, 2, 0.001 | 28.36 | ||
150, 2, 0.001 | 27.87 | ||
30, 4, 0.001 | 28.80 | ||
90, 4, 0.001 | 28.10 | ||
150, 4, 0.001 | 27.41 | ||
30, 7, 0.001 | 28.73 | ||
90, 7, 0.001 | 27.88 | ||
150, 7, 0.001 | 27.11 | ||
30, 2, 0.01 | 26.83 | ||
90, 2, 0.01 | 23.60 | ||
150, 2, 0.01 | 21.32 | ||
30, 4, 0.01 | 25.82 | ||
90, 4, 0.01 | 21.27 | ||
150, 4, 0.01 | 18.43 | ||
30, 7, 0.01 | 25.33 | ||
90, 7, 0.01 | 20.34 | ||
150, 7, 0.01 | 17.27 | ||
30, 2, 0.1 | 17.72 | ||
90, 2, 0.1 | 13.96 | ||
150, 2, 0.1 | 13.21 | ||
30, 4, 0.1 | 14.86 | ||
90, 4, 0.1 | 12.49 | ||
150, 4, 0.1 | 12.12 | ||
30, 7, 0.1 | 13.38 | ||
90, 7, 0.1 | 11.82 | ||
150, 7, 0.1 | 11.63 |
Model | Abbreviation | RMSE (MPa) | MAE (MPa) | R | References |
---|---|---|---|---|---|
Decision tree | DT | 7.37 | 4.62 | 0.81 | [57] |
Multilayer perceptron neuron network | MPNN | 6.67 | 5.14 | 0.8 | |
Support vector regression | SVR | 7.17 | 5.56 | 0.81 | |
Decision tree—Adaboost | DT-Ab | 5.22 | 3.69 | 0.91 | |
Multilayer perceptron neuron network—Adaboost | MPNN-Ab | 6.25 | 4.6 | 0.85 | |
Support vector regression—Adaboost | SVR-Ab | 7.01 | 5.07 | 0.82 | |
Random forest | RF | 4.6 | 3.23 | 0.92 | |
Decision tree—Bagging | DT-B | 4.72 | 3.37 | 0.92 | |
Multilayer perceptron neuron network—Bagging | MPNN-B | 6.66 | 4.88 | 0.84 | |
Support vector regression—Bagging | SVR-B | 7.01 | 5.15 | 0.84 | |
Decision tree—Xgboost | DT-Xgb | 5.17 | 3.71 | 0.9 | |
Multilayer perceptron neuron network—Xgboost | MPNN-Xgb | 517 | 3.71 | 0.88 | |
Support vector regression—Xgboost | SVR-Xgb | 5.17 | 3.71 | 0.9 | |
Gradient boosting tree | GBT+ | 4.8 | 3.07 | 0.95 | Present study |
Gene expression programming | GEP+ | 7.22 | 5.74 | 0.9 | |
Adaptive neurofuzzy inference system | ANFIS+ | 5.4 | 3.93 | 0.94 | |
Gene expression programming | GEP | 5.2 | 0.9 | [34] | |
Artificial neural network | ANN | 6.329 | 4.421 | 0.93 | [29] |
Ensemble model artificial neural network—supportvector regression | ANN-SVR | 6.17 | 4.24 | 0.94 | |
Chi-squared automatic interaction detector | CHAID | 8.98 | 6.088 | 0.86 | |
Linear regression | LR | 11.24 | 7.87 | 0.80 | |
Generalized linear model | GENLIN | 11.37 | 7.87 | 0.80 | |
Classification and regression trees | CART | 9.703 | 6.815 | 0.84 | [29] |
Smart firefly algorithm-based least squares | SFA-LSSVR | 5.62 | 3.86 | 0.94 | [58] |
Modified firefly algorithm-based ANN | MFA-ANN | 5.82 | 3.41 | 0.93 | [26] |
Variable Input Parameters | No. of Data Points | Constant Input Parameters | |
---|---|---|---|
Parameter | Range | ||
C | 102–540 | 10 | GGBFS = 74.27, FA = 62.81, W = 182.98, SP = 6.42, CA = 964.83, FAgg = 770.49, A = 44.06 |
GGBFS | 0–359.40 | 10 | C = 276, FA = 62.81, W = 182.98, SP = 6.42, CA = 964.83, FAgg = 770.49, A = 44.06 |
FA | 0–260 | 10 | C = 276, GGBFS = 74.27, W = 182.98, SP = 6.42, CA = 964.83, FAgg = 770.49, A = 44.06 |
W | 121.75–247 | 10 | C = 276, GGBFS = 74.27, FA = 62.81, SP = 6.42, CA = 964.83, FAgg = 770.49, A = 44.06 |
SP | 0–32.20 | 10 | C = 276, GGBFS = 74.27, FA = 62.81, W = 182.98, CA = 964.83, FAgg = 770.49, A = 44.06 |
CA | 708–1145 | 10 | C = 276, GGBFS = 74.27, FA = 62.81, W = 182.98, SP = 6.42, FAgg = 770.49, A = 44.06 |
FAgg | 594–992 | 10 | C = 276, GGBFS = 74.27, FA = 62.81, W = 182.98, SP = 6.42, CA = 964.83, A = 44.06 |
A | 1–365 | 10 | C = 276, GGBFS = 74.27, FA = 62.81, W = 182.98, SP = 6.42, CA = 964.83, FAgg = 770.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, K.; Salami, B.A.; Iqbal, M.; Amin, M.N.; Ahmed, F.; Jalal, F.E. Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models. Materials 2022, 15, 3722. https://doi.org/10.3390/ma15103722
Khan K, Salami BA, Iqbal M, Amin MN, Ahmed F, Jalal FE. Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models. Materials. 2022; 15(10):3722. https://doi.org/10.3390/ma15103722
Chicago/Turabian StyleKhan, Kaffayatullah, Babatunde Abiodun Salami, Mudassir Iqbal, Muhammad Nasir Amin, Fahim Ahmed, and Fazal E. Jalal. 2022. "Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models" Materials 15, no. 10: 3722. https://doi.org/10.3390/ma15103722
APA StyleKhan, K., Salami, B. A., Iqbal, M., Amin, M. N., Ahmed, F., & Jalal, F. E. (2022). Compressive Strength Estimation of Fly Ash/Slag Based Green Concrete by Deploying Artificial Intelligence Models. Materials, 15(10), 3722. https://doi.org/10.3390/ma15103722