Pressure-Enhanced Photocurrent in One-Dimensional SbSI via Lone-Pair Electron Reconfiguration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. In Situ High-Pressure Characterizations
2.3. XRD Measurements
2.4. Optical Absorption Measurements
2.5. Resistance and Photocurrent Measurement
2.6. Density Functional Theory (DFT) Calculations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, R.E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358, 136–138. [Google Scholar] [CrossRef]
- Park, B.H.; Kang, B.S.; Bu, S.D.; Noh, T.W.; Lee, J.; Jo, W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 1999, 401, 682–684. [Google Scholar] [CrossRef]
- Baek, S.H.; Jang, H.W.; Folkman, C.M.; Li, Y.L.; Winchester, B.; Zhang, J.X.; He, Q.; Chu, Y.H.; Nelson, C.T.; Rzchowski, M.S.; et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 2010, 9, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Huang, H. Ferroelectric photovoltaics. Nat. Photonics 2010, 4, 134–135. [Google Scholar] [CrossRef]
- Grinberg, I.; West, D.V.; Torres, M.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.R.; Davies, P.K.; et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Sarkar, D.; Williams, K.; Zhou, Y.; Li, Y.; Bianco, E.; Huyan, H.; Cronin, S.B.; McConney, M.E.; Haiges, R.; et al. Optimal bandgap in a 2D Ruddlesden–Popper perovskite chalcogenide for single-junction solar cells. Chem. Mater. 2018, 30, 4882–4886. [Google Scholar] [CrossRef] [Green Version]
- Sotome, M.; Nakamura, M.; Fujioka, J.; Ogino, M.; Kaneko, Y.; Morimoto, T.; Zhang, Y.; Kawasaki, M.; Nagaosa, N.; Tokura, Y.; et al. Spectral dynamics of shift current in ferroelectric semiconductor SbSI. Proc. Natl. Acad. Sci. USA 2019, 116, 1929–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varghese, J.; O’Regan, C.; Deepak, N.; Whatmore, R.W.; Holmes, J.D. Surface roughness assisted growth of vertically oriented ferroelectric SbSI nanorods. Chem. Mater. 2012, 24, 3279–3284. [Google Scholar] [CrossRef]
- Liu, F.; You, L.; Seyler, K.L.; Li, X.; Yu, P.; Lin, J.; Wang, X.; Zhou, J.; Wang, H.; He, H.; et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357. [Google Scholar] [CrossRef]
- Simon, A.; Ravez, J.; Maisonneuve, V.; Payen, C.; Cajipe, V.B. Paraelectric-ferroelectric transition in the lamellar thiophosphate CuInP2S6. Chem. Mater. 1994, 6, 1575–1580. [Google Scholar] [CrossRef]
- Kooi, B.J.; Noheda, B. Ferroelectric chalcogenides—Materials at the edge. Science 2016, 353, 221–222. [Google Scholar] [CrossRef]
- Fabini, D.H.; Laurita, G.; Bechtel, J.S.; Stoumpos, C.C.; Evans, H.A.; Kontos, A.G.; Raptis, Y.S.; Falaras, P.; Van der Ven, A.; Kanatzidis, M.G. Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3. J. Am. Chem. Soc. 2016, 138, 11820–11832. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, S.D.; Yeon, J.; Kim, S.H.; Halasyamani, P.S. BiO(IO3): A new polar iodate that exhibits an aurivillius-type (Bi2O2)2+ layer and a large SHG response. J. Am. Chem. Soc. 2011, 133, 12422–12425. [Google Scholar] [CrossRef]
- Smith, E.H.; Benedek, N.A.; Fennie, C.J. Interplay of octahedral rotations and lone pair ferroelectricity in CsPbF3. Inorg. Chem. 2015, 54, 8536–8543. [Google Scholar] [CrossRef]
- Lü, X.; Stoumpos, C.; Hu, Q.; Ma, X.; Zhang, D.; Guo, S.; Hoffman, J.; Bu, K.; Guo, X.; Wang, Y.; et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites. Natl. Sci. Rev. 2021, 8, nwaa288. [Google Scholar] [CrossRef]
- Bu, K.; Luo, H.; Guo, S.; Li, M.; Wang, D.; Dong, H.; Ding, Y.; Yang, W.; Lü, X. Pressure-Regulated Dynamic Stereochemical Role of Lone-Pair Electrons in Layered Bi2O2S. J. Phys. Chem. Lett. 2020, 11, 9702–9707. [Google Scholar] [CrossRef]
- Fabini, D.H.; Seshadri, R.; Kanatzidis, M.G. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS Bull. 2020, 45, 467–477. [Google Scholar] [CrossRef]
- Remsing, R.C.; Klein, M.L. Lone pair rotational dynamics in solids. Phy. Rev. Lett. 2020, 124, 066001. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.D.; Ozolins, V.; Heremans, J.P. Lone pair electrons minimize lattice thermal conductivity. Energy Environ. Sci. 2013, 6, 570–578. [Google Scholar] [CrossRef]
- Fatuzzo, E.; Harbeke, G.; Merz, W.J.; Nitsche, R.; Roetschi, H.; Ruppel, W. Ferroelectricity in SbSI. Phys. Rev. 1962, 127, 2036. [Google Scholar] [CrossRef]
- Ogawa, N.; Sotome, M.; Kaneko, Y.; Ogino, M.; Tokura, Y. Shift current in the ferroelectric semiconductor SbSI. Phys. Rev. B 2017, 96, 241203. [Google Scholar] [CrossRef] [Green Version]
- Mistewicz, K.; Nowak, M.; Stróż, D. A ferroelectric-photovoltaic effect in SbSI nanowires. Nanomaterials 2019, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Yoo, C. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter Radiat. Extremes 2020, 5, 018202. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.-K.; Chen, X.-J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 015007. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Bu, K.; Li, J.; Hu, Q.; Luo, H.; He, Y.; Wu, Y.; Zhang, D.; Zhao, Y.; Yang, W.G.; et al. Enhanced Photocurrent of All-Inorganic Two-Dimensional Perovskite Cs2PbI2Cl2 via Pressure-Regulated Excitonic Features. J. Am. Chem. Soc. 2021, 143, 2545–2551. [Google Scholar] [CrossRef]
- Ji, C.; Li, B.; Liu, W.; Smith, J.S.; Majumdar, A.; Luo, W.; Ahuja, R.; Shu, J.; Wang, J.; Sinogeikin, S.; et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 2019, 573, 558–562. [Google Scholar] [CrossRef]
- Chen, M.; Guo, S.; Bu, K.; Lee, S.; Luo, H.; Wang, Y.; Liu, B.; Yan, Z.; Dong, H.; Yang, W.G.; et al. Pressure-induced robust emission in a zero-dimensional hybrid metal halide (C9NH20)6Pb3Br12. Matter Radiat. Extremes 2021, 6, 058401. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Guo, S.H.; Luo, H.; Zhou, C.; Lin, H.; Ma, X.; Hu, Q.; Du, M.-H.; Ma, B.; Yang, W.G.; et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss. J. Am. Chem. Soc. 2020, 142, 16001–16006. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Guo, S.; Zhang, Y.; Bu, K.; Lin, H.; Wang, Y.; Yin, Y.; Zhang, D.; Jin, S.; Zhang, W.Q.; et al. Regulating Exciton–Phonon Coupling to Achieve a Near-Unity Photoluminescence Quantum Yield in One-Dimensional Hybrid Metal Halides. Adv. Sci. 2021, 8, 2100786. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.-K.; Xu, J.; Bell, P. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. Solid Earth 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Chen, X.; Lou, H.; Zeng, Z.; Cheng, B.; Zhang, X.; Liu, Y.; Xu, D.; Yang, K.; Zeng, Q. Structural transitions of 4: 1 methanol–ethanol mixture and silicone oil under high pressure. Matter Radiat. Extremes 2021, 6, 038402. [Google Scholar] [CrossRef]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Kristallogr. Cryst. Mater. 2014, 229, 345–352. [Google Scholar] [CrossRef]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809. [Google Scholar] [CrossRef]
- Kortüm, G.; Braun, W.; Herzog, G. Principles and techniques of diffuse-reflectance spectroscopy. Angew. Chem. Int. Ed. 1963, 2, 333–341. [Google Scholar] [CrossRef]
- Huang, X.; Gao, C.; Han, Y.; Li, M.; He, C.; Hao, A.; Zhang, D.; Yu, C.; Zou, G.; Ma, Y. Finite element analysis of resistivity measurement with van der Pauw method in a diamond anvil cell. Appl. Phys. Lett. 2007, 90, 242102. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Savin, A.; Silvi, B.; Colonna, F. Topological analysis of the electron localization function applied to delocalized bonds. Can. J. Chem. 1996, 74, 1088–1096. [Google Scholar] [CrossRef]
- Shockley, W. The Shockley-Queisser limit. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Konstantakou, M.; Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 11518–11549. [Google Scholar] [CrossRef]
- Samara, G. Effects of pressure on the dielectric properties of and the vanishing of the ferroelectricity in SbSI. Phys. Rev. B 1975, 9, 209–219. [Google Scholar] [CrossRef]
- Mirsian, S.; Khodadadian, A.; Hedayati, M.; Manzour-ol-Ajdad, A.; Kalantarinejad, R.; Heitzinger, C. A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens. Bioelectron. 2019, 142, 111527. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, L.; Qiu, X.; Zhang, Q.; Liu, K.; Lin, Q.; Wang, G. Quasi-one-dimensional structure and possible helical antiferromagnetism of RbMn6Bi5. Inorg. Chem. 2021, 60, 12941–12949. [Google Scholar] [CrossRef]
- Jiang, H.; Cao, G.; Cao, C. Electronic structure of quasi-one-dimensional superconductor K2Cr3As3 from first-principles calculations. Sci. Rep. 2015, 5, 16054. [Google Scholar] [CrossRef] [Green Version]
- Bu, K.; Huang, J.; Luo, M.; Guan, M.; Zheng, C.; Pan, J.; Zhang, X.; Wang, S.; Zhao, W.; Shi, X.; et al. Observation of High Seebeck Coefficient and Low Thermal Conductivity in [SrO]-Intercalated CuSbSe2 Compound. Chem. Mater. 2018, 30, 5539–5543. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Bu, K.; Zhang, Q.; Zhang, P.; Guo, S.; Liang, J.; Wang, B.; Zheng, H.; Wang, Y.; Yang, W.; et al. Pressure-Enhanced Photocurrent in One-Dimensional SbSI via Lone-Pair Electron Reconfiguration. Materials 2022, 15, 3845. https://doi.org/10.3390/ma15113845
Liu T, Bu K, Zhang Q, Zhang P, Guo S, Liang J, Wang B, Zheng H, Wang Y, Yang W, et al. Pressure-Enhanced Photocurrent in One-Dimensional SbSI via Lone-Pair Electron Reconfiguration. Materials. 2022; 15(11):3845. https://doi.org/10.3390/ma15113845
Chicago/Turabian StyleLiu, Tianbiao, Kejun Bu, Qian Zhang, Peijie Zhang, Songhao Guo, Jiayuan Liang, Bihan Wang, Haiyan Zheng, Yonggang Wang, Wenge Yang, and et al. 2022. "Pressure-Enhanced Photocurrent in One-Dimensional SbSI via Lone-Pair Electron Reconfiguration" Materials 15, no. 11: 3845. https://doi.org/10.3390/ma15113845
APA StyleLiu, T., Bu, K., Zhang, Q., Zhang, P., Guo, S., Liang, J., Wang, B., Zheng, H., Wang, Y., Yang, W., & Lü, X. (2022). Pressure-Enhanced Photocurrent in One-Dimensional SbSI via Lone-Pair Electron Reconfiguration. Materials, 15(11), 3845. https://doi.org/10.3390/ma15113845