Molecular Dynamics Investigation of Spreading Performance of Physiological Saline on Surface
Abstract
:1. Introduction
2. Methodology
2.1. Creation of Simulation Model
2.2. Computational Details
3. Results and Discussion
3.1. Displacement Distribution of Physiological Saline
3.2. Concentration Distribution of Physiological Saline
3.3. Infiltration Angle Distribution of Salty Fluid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tekin, E.; Smith, P.J.; Schubert, U.S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 2008, 4, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Suleman, M.; Riaz, S. In silico study of enhanced permeation and retention effect and hyperthermia of porous tumor. Med. Eng. Phys. 2020, 86, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Rutkove, S.B.; Hyeuknam, K.; Maria, G. Electrical impedance imaging of human muscle at the microscopic scale using a multi-electrode needle device: A simulation study. Clin. Neurophysiol. 2018, 129, 3453–3463. [Google Scholar] [CrossRef] [PubMed]
- Cetingül, M.P.; Herman, C. A heat transfer model of skin tissue for the detection of lesions: Sensitivity analysis. Phys. Med. Biol. 2010, 55, 5933–5984. [Google Scholar] [CrossRef]
- Zhou, Y.; Herman, C. Optimization of skin cooling by computational modeling for early thermographic detection of breast cancer. Int. J. Heat Mass Transf 2018, 126, 864–876. [Google Scholar] [CrossRef]
- Seyf, H.R.; Zhang, Y. Molecular Dynamics Simulation of Normal and Explosive Boiling on Nanostructured Surface. J. Heat Transf. 2013, 135, 391–398. [Google Scholar]
- Halter, R.J.; Hartov, A.; Poplack, S.P. Real-Time Electrical Impedance Variations in Women with and without Breast Cancer. IEEE Trans. Med. Imaging 2015, 34, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Ekstrand, J.; Healy, J.C.; Waldén, M. Hamstring muscle injuries in professional football: The correlation of MRI findings with return to play. Br. J. Sports Med. 2012, 46, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, C.S.; Jakobsen, J.; Ringgaard, S. Accelerated atrophy of lower leg and foot muscles—A follow-up study of long-term diabetic polyneuropathy using magnetic resonance imaging (MRI). Diabetologia 2009, 52, 1454. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.; Nagy, J.A.; Taylor, R. New electrical impedance methods for the in situ measurement of the complex permittivity of anisotropic biological tissues. Phys. Med. Biol. 2017, 30, 529–536. [Google Scholar] [CrossRef]
- Dugas, V.; Broutin, J.; Souteyrand, E. Droplet evaporation study applied to DNA chip manufacturing. Langmuir 2005, 21, 9130–9136. [Google Scholar] [CrossRef] [PubMed]
- Daub, C.D.; Bratko, D.; Luzar, A. Electric control of wetting by salty nanodrops: Molecular dynamics simulations. J. Phys. Chem. C 2011, 115, 22393–22399. [Google Scholar] [CrossRef]
- Consolini, L.; Aggarwal, S.K.; Murad, S. A molecular dynamics simulation of droplet evaporation. Int. J. Heat Mass Transf. 2003, 46, 3179–3188. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanev, I.L.; Balabaev, N.K.; Glyakina, A.V.; Morozov, V.N. Computer simulation of gas-phase neutralization of electrospray-generated protein macroions. J. Phys. Chem. B 2012, 116, 5872–5881. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.-L.; Yiacoumi, S.; Tsouris, C. Canonical Monte Carlo simulations of thefluctuating-charge molecular water between charged surfaces. J. Chem. Phys. 2002, 117, 337–345. [Google Scholar] [CrossRef]
- Luedtke, W.D.; Landman, U.; Chiu, Y.H.; Levandier, D.J.; Dressler, R.A.; Sok, S.; Gordon, M.S. Nanojets, electrospray, and ion field evaporation: Moleculardynamics simulations and laboratory experiments. J. Phys. Chem. A 2008, 112, 9628–9649. [Google Scholar] [CrossRef] [Green Version]
- Metya, A.K.; Hens, A.; Singh, J.K. Molecular dynamics study of vapor–liquid equilibria and transport properties of sodium and lithium based on EAM potentials. Fluid Phase Equilib. 2012, 313, 16–24. [Google Scholar] [CrossRef]
- Tuckerman, M. Statistical Mechanics: Theory and Molecular Simulation; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Nieminen, J.A.; Abraham, D.B.; Karttunen, M.; Kaski, K. Molecular dynamics of a microscopic droplet on solid surface. Phys. Rev. Lett. 1992, 69, 124–127. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Okuno, Y.; Minagawa, M.; Matsumoto, H.; Tanioka, A. Simulation study on the influence of an electric field on water evaporation. J. Mol. Struct. 2009, 904, 83–90. [Google Scholar] [CrossRef]
- Chanmugam, A.; Hatwar, R.; Herman, C. Thermal analysis of cancerous breast model. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2012; Volume 45189, pp. 134–143. [Google Scholar]
- Ng, E.K. A review of thermography as promising non-invasive detection modality for breast tumor. Int. J. Therm. Sci. 2009, 48, 849–859. [Google Scholar] [CrossRef]
- Chaban, V.V.; Fileti, E.E.; Prezhdo, O.V. Exfoliation of Graphene in Ionic Liquids: Pyri-dinium versus Pyrrolidinium. J. Phys. Chem. C 2016, 121, 911–917. [Google Scholar] [CrossRef]
- Colherinhas, G.; Fileti, E.E.; Chaban, V.V. Can inorganic salts tune electronic properties of graphene quantum dots? Phys. Chem. Chem. Phys. 2015, 17, 17413–17420. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xiao, Y.; Shi, X. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study. Nanomaterials 2017, 7, 265. [Google Scholar] [CrossRef]
- Song, F.H.; Li, B.Q.; Liu, C. Molecular dynamics simulation of nanosized water droplet spreading in an electric field. Langmuir 2013, 29, 4266–4274. [Google Scholar] [CrossRef]
- Srivastava, R.; Singh, J.K.; Cummings, P.T. Effect of electric field on water confined in graphite and mica pores. J. Phys. Chem. C 2012, 116, 17594–17603. [Google Scholar] [CrossRef]
- Sutmann, G. Structure formation and dynamics of water in strong external electric fields. J. Electroanal. Chem. 1998, 450, 289–302. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Shilpi, C.; Abhiram, H.; Kartik, C.G.; Gautam, B. Molecular dynamics study of sessile ionic nanodroplet under external electric field. Chem. Eng. Sci. 2020, 229, 6355–6367. [Google Scholar]
- Colherinhas, G.; Fileti, E.E.; Chaban, V.V. The Band Gap of Graphene Is Efficiently Tuned by Monovalent Ions. J. Phys. Chem. Lett. 2014, 6, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Chaban, V.V.; Andr, E.V.N.A.; Fileti, E.E. Graphene/ionic liquid ultracapacitors: Does ionic size correlate with energy storage performance? New J. Chem. 2018, 42, 18409–18417. [Google Scholar] [CrossRef]
- Chaban, V.V.; Fileti, E.E. Graphene exfoliation in ionic liquids: Unified methodology. RSC Adv. 2015, 5, 81229–81234. [Google Scholar] [CrossRef]
System | P-1 | P-2 | P-3 | P-4 |
---|---|---|---|---|
3% | 6% | 13.2% | 26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Wang, X. Molecular Dynamics Investigation of Spreading Performance of Physiological Saline on Surface. Materials 2022, 15, 3925. https://doi.org/10.3390/ma15113925
Pan J, Wang X. Molecular Dynamics Investigation of Spreading Performance of Physiological Saline on Surface. Materials. 2022; 15(11):3925. https://doi.org/10.3390/ma15113925
Chicago/Turabian StylePan, Jianhua, and Xiao Wang. 2022. "Molecular Dynamics Investigation of Spreading Performance of Physiological Saline on Surface" Materials 15, no. 11: 3925. https://doi.org/10.3390/ma15113925
APA StylePan, J., & Wang, X. (2022). Molecular Dynamics Investigation of Spreading Performance of Physiological Saline on Surface. Materials, 15(11), 3925. https://doi.org/10.3390/ma15113925