Study on the Mechanical Properties, Wear Resistance and Microstructure of Hybrid Fiber-Reinforced Mortar Containing High Volume of Industrial Solid Waste Mineral Admixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Ordinary Portland Cement
2.1.2. Fly Ash
2.1.3. Silica Fume
2.1.4. Slag
2.1.5. Fibers
2.1.6. Fine Aggregate
2.1.7. Water
2.2. Mix Proportions
2.3. Specimen Preparation and Curing
2.4. Test Procedure
3. Results and Discussion
3.1. Compressive Strength
3.2. Flexural Strength
3.3. Wear Resistance
3.4. Microstructure
4. Conclusions
- Comprehensively considering the compressive strength, flexural strength, wear resistance and microstructure of the mortar samples, G8PP2-0.40 is the optimal mix proportion. At this time, the replacement ratio of fly ash, silica fume and slag are: 20%, 5% and 30%, the water/binder ratio is 0.40, and the content of GF and PPF are 1.6% and 0.4%, respectively.
- The incorporation of fibers has obvious negative effects on mortar samples with a low water/binder ratio (w/b = 0.27) and high content of mineral admixture.
- Adding hybrid fiber could improve the wear resistance of mortar more obviously; the average residual weight of HFRM was higher after a wear abrasion test.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsu, S.; Chi, M.; Huang, R. Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar. Constr. Build. Mater. 2018, 176, 250–258. [Google Scholar] [CrossRef]
- Radwan, M.; Onn, C.C.; Mo, K.H.; Yap, S.P.; Chin, R.J.; Lai, S.H. Sustainable ternary cement blends with high-volume ground granulated blast furnace slag–fly ash. Environ. Dev. Sustain. 2021, 11, 1–35. [Google Scholar] [CrossRef]
- Lemonis, N.; Tsakiridis, P.E.; Katsiotis, N.S.; Antiohos, S.; Papageorgiou, D.; Beazi-Katsioti, M. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Constr. Build. Mater. 2015, 81, 130–139. [Google Scholar] [CrossRef]
- Yu, J.; Li, G.; Leung, C.K.Y. Hydration and physical characteristics of ultrahigh-volume fly ash-cement systems with low water/binder ratio. Constr. Build. Mater. 2018, 161, 509–518. [Google Scholar] [CrossRef]
- Hu, C. Microstructure and mechanical properties of fly ash blended cement pastes. Constr. Build. Mater. 2014, 73, 618–625. [Google Scholar] [CrossRef]
- Alvarez, G.L.; Nazari, A.; Bagheri, A.; Sanjayan, J.; De Lange, C. Microstructure, electrical and mechanical properties of steel fibres reinforced cement mortars with partial metakaolin and limestone addition. Constr. Build. Mater. 2017, 135, 8–20. [Google Scholar] [CrossRef]
- Rivera, R.A.; Sanjuán, M.N.; Martín, D.A. Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Optimization. Sustainability 2020, 12, 5783. [Google Scholar] [CrossRef]
- Aprianti, E.; Shafigh, P.; Zawawi, R.; Hassan, Z.F.A. Introducing an effective curing method for mortar containing high volume cementitious materials. Constr. Build. Mater. 2016, 107, 365–377. [Google Scholar] [CrossRef]
- Jeong, Y.; Park, H.; Jun, Y.; Jeong, J.-H.; Oh, J.E. Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS. Constr. Build. Mater. 2015, 95, 96–107. [Google Scholar] [CrossRef]
- Hammat, S.; Menadi, B.; Kenai, S.; Thomas, C.; Kirgiz, M.S.; de Sousa Galdino, A.G. The effect of content and fineness of natural pozzolana on the rheological, mechanical, and durability properties of self-compacting mortar. J. Build. Eng. 2021, 44, 103276. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties and Materials, 4th ed.; McGraw-Hill Professional: New York, NY, USA, 2014. [Google Scholar]
- Zhang, T.; Ma, B.; Jiang, D.; Jiang, Q.; Jin, Z. Comparative research on the effect of various mineral admixtures on the early hydration process of cement. Constr. Build. Mater. 2021, 301, 124372. [Google Scholar] [CrossRef]
- Kocak, Y.; Nas, S. The effect of using fly ash on the strength and hydration characteristics of blended cements. Constr. Build. Mater. 2014, 73, 25–32. [Google Scholar] [CrossRef]
- Yudong, D.; Pei, L.; Fu, J.; Yang, Y.; Liu, T.; Liang, H.; Yang, H. Investigating the Mechanical Properties and Durability of Metakaolin-Incorporated Mortar by Different Curing Methods. Materials 2022, 15, 2035. [Google Scholar]
- Chen, X.; Sun, Z.; Pang, J. Effects of active mineral admixture on mechanical properties and durability of concrete. Mater. Res. Express 2021, 8, 115506. [Google Scholar]
- Guo, J.; Cui, L.; Wu, J.; Xu, H.; Zhang, Z.; Zhang, Y.; Qin, G.; Meng, Q.; Li, H.; Wang, K. Mineral Additives to Enhance Early-Age Crack Resistance of Concrete under a Large-Temperature-Difference Environment. Appl. Sci. 2021, 11, 9338. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Q.F. Combined effect of polypropylene fiber and silica fume on workability and carbonation resistance of concrete composite containing fly ash. Proceedings of the Institution of Mechanical Engineers Part L. J. Mater. Des. Appl. 2013, 227, 250–258. [Google Scholar]
- Cui, Y.; Wang, L.; Liu, J.; Liu, R.; Pang, B. Impact of particle size of fly ash on the early compressive strength of concrete: Experimental investigation and modelling. Constr. Build. Mater. 2022, 323, 126444. [Google Scholar] [CrossRef]
- Yu, J.; Lu, C.; Leung, C.K.Y.; Li, G. Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Constr. Build. Mater. 2017, 147, 510–518. [Google Scholar] [CrossRef]
- Qiu, J.; Zhou, Y.; Guan, X.; Zhu, M. The influence of fly ash content on ITZ microstructure of coal gangue concrete. Constr. Build. Mater. 2021, 298, 123562. [Google Scholar] [CrossRef]
- Yu, Z.; Ni, C.; Tang, M.; Shen, X. Relationship between water permeability and pore structure of Portland cement paste blended with fly ash—ScienceDirect. Constr. Build. Mater. 2018, 175, 458–466. [Google Scholar] [CrossRef]
- Ahmaran, M.; Li, V.C. Durability properties of micro-cracked ECC containing high volumes fly ash. Cem. Concr. Res. 2009, 39, 1033–1043. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mater. 2019, 203, 174–187. [Google Scholar] [CrossRef]
- Karein, S.M.M.; Ramezanianpour, A.A.; Ebadi, T.; Isapour, S.; Karakouzian, M. A new approach for application of silica fume in concrete: Wet granulation. Constr. Build. Mater. 2017, 157, 573–581. [Google Scholar] [CrossRef]
- Song, H.W.; Pack, S.W.; Nam, S.H.; Jang, J.-C.; Saraswathy, V. Estimation of the permeability of silica fume cement concrete. Constr. Build. Mater. 2010, 24, 315–321. [Google Scholar] [CrossRef]
- Golewski, G.L.; Gil, D.M. Studies of Fracture Toughness in Concretes Containing Fly Ash and Silica Fume in the First 28 Days of Curing. Materials 2021, 14, 319. [Google Scholar] [CrossRef]
- Bonavetti, V.L.; Castellano, C.; Donza, H.; Rahhal, V.F.; Irassar, E.F. Cement with silica fume and granulated blast-furnace slag: Strength behavior and hydration. Mater. Constr. 2014, 64, e025. [Google Scholar] [CrossRef] [Green Version]
- Sanjuán, M.Á.; Estévez, E.; CristinaArgiz; del Barrio, D. Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cem. Concr. Compos. 2018, 90, 257–265. [Google Scholar] [CrossRef]
- Lee, H.S.; Wang, X.Y.; Zhang, L.N.; Koh, K.-T. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete. Materials 2015, 8, 1213–1229. [Google Scholar] [CrossRef]
- Czop, M.; Łaźniewska-Piekarczyk, B. Use of Slag from the Combustion of Solid Municipal Waste as A Partial Replacement of Cement in Mortar and Concrete. Materials 2020, 13, 1593. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Early-Age Mechanical Characteristics and Microstructure of Concrete Containing Mineral Admixtures under the Environment of Low Humidity and Large Temperature Variation. Materials 2021, 14, 5085. [Google Scholar]
- Gesoglu, M.; Gueneyisi, E.; Oezbay, E. Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Constr. Build. Mater. 2009, 23, 1847–1854. [Google Scholar] [CrossRef]
- Yuan, Z.; Jia, Y. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2021, 266, 121048. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Latifi, M.; Jamshidi, M. Hybrid short Fiber Reinforcement System in Concrete: A Review. Constr. Build. Mater. 2017, 142, 280–294. [Google Scholar] [CrossRef]
- Liu, J.; Jia, Y.; Wang, J. Experimental Study on Mechanical and Durability Properties of Glass and Polypropylene Fiber Reinforced Concrete. Fibers Polym. 2019, 20, 1900–1908. [Google Scholar] [CrossRef]
- Bankir, M.B.; Sevim, U.K. Performance optimization of hybrid fiber concrete according to mechanical properties. Constr. Build. Mater. 2020, 261, 119952. [Google Scholar] [CrossRef]
- Ahmed, A.; Jia, Y. Effect of Using Hybrid Polypropylene and Glass Fibre on the Mechanical Properties and Permeability of Concrete. Materials 2019, 12, 3786. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, S.T.; Ekinci, C.E.; Findik, F. Properties of hybrid fiber reinforced concrete under repeated impact loads. Russ. J. Nondestruct. Test. 2010, 46, 538–546. [Google Scholar] [CrossRef]
- Koniki, S.; Prasad, D.R. Infuence of hybrid fbres on strength and stress-strain behaviour of concrete under uni-axial stresses. Constr. Build. Mater. 2019, 207, 238–248. [Google Scholar] [CrossRef]
- Athiyamaan, V.; Ganesh, G.M. Experimental, statistical and simulation analysis on impact of micro steel—Fibres in reinforced SCC containing admixtures. Constr. Build. Mater. 2020, 246, 118450. [Google Scholar] [CrossRef]
- Amanjean, E.N.; Mouret, M.; Vidal, T. Effect of design parameters on the properties of ultra-high performance fibre-reinforced concrete in the fresh state. Constr. Build. Mater. 2019, 224, 1007–1017. [Google Scholar] [CrossRef]
- Bang, Y.; Jiang, J.; Wang, W.; Xia, L. Effect of Mineral Admixture on strength development of basalt fiber Cement Mortar. J. Build. Mater. 2014, 17, 5. [Google Scholar]
- Juan, H.; Congmi, C.; Yinan, Y.; Yafang, Z.; Mingfeng, Z. Effect of Admixtures on properties of glass fiber reinforced cement during wet heat Curing. J. Jilin Univ. Eng. Technol. Ed. 2020, 50, 6. [Google Scholar]
- Abbasi, B.A.; Raza, S.S.; Hussain, I.; Iqbal, M. Influence of different fibers on mechanical and durability performance of concrete with silica fume. Struct. Concr. 2020, 22, 318–333. [Google Scholar]
- Qureshi, L.A.; Ali, B.; Al, A. Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete. Constr. Build. Mater. 2020, 263, 120636. [Google Scholar] [CrossRef]
- Cheng, C.; He, J.; Zhang, J.; Yang, Y. Study on the time-dependent mechanical properties of glass fiber reinforced cement (GRC)with fly ash or slag. Constr. Build. Mater. 2019, 217, 128–136. [Google Scholar] [CrossRef]
- CS (Chinese Standard) GB/T 1346–2011; Test Methods for Water Requirement of Normal Consistency. Setting Time and Soundness of the Portland Cement. Standards Press of China: Beijing, China, 2011. (In Chinese)
- CS (Chinese Standard) GB/T 8074–2008; Test Methods for Specific Surface of Cement—Blaine Method. Standards Press of China: Beijing, China, 2008. (In Chinese)
- CS (Chinese Standard) GB/T 17671–2021; Test Method of Cement Mortar Strength (ISO Method). Standards Press of China: Beijing, China, 2021. (In Chinese)
- Zhenxue, L.; Li, W. Experimental Design and Data Processing; Chemistry and Chemical Industry Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Qiang, Z.; Li, K.; Fen-Chong, T.; Dangla, P. Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes. Constr. Build. Mater. 2013, 27, 560–569. [Google Scholar]
- Wongkeo, W.; Thongsanitgarn, P.; Poon, C.S.; Chaipanich, A. Heat of hydration of cement pastes containing high-volume fly ash and silica fume. J. Therm. Anal. Calorim. 2019, 138, 2065–2075. [Google Scholar] [CrossRef]
- Lam, N.T.; Le, D.H.; Jaritngam, S. Compressive strength and durability properties of roller-compacted concrete pavement containing electric arc furnace slag aggregate and fly ash. Constr. Build. Mater. 2018, 191, 912–922. [Google Scholar] [CrossRef]
- Nassar, R.; Soroushian, P.; Ghebrab, T. Field investigation of high-volume fly ash pavement concrete. Resour. Conserv. Recycl. 2013, 73, 78–85. [Google Scholar] [CrossRef]
- Han, F.; He, X.; Zhang, Z.; Liu, J. Hydration heat of slag or fly ash in the composite binder at different temperatures. Thermochim. Acta 2017, 655, 202–210. [Google Scholar] [CrossRef]
- Dawood, E.T.; Ramli, M. High strength characteristics of cement mortar reinforced with hybrid fibres. Constr. Build. Mater. 2011, 25, 2240–2247. [Google Scholar] [CrossRef]
- Banthia, N.; Gupta, R. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cem. Concr. Res. 2006, 36, 1263–1267. [Google Scholar] [CrossRef]
- CS (Chinese Standard) JGJ/T 98-2010; Specification for Mix Proportion Design of Masonry Mortar. China Building Industry Press: Beijing, China, 2010. (In Chinese)
- ASTM C1723; Standard Guide for Examination of Hardened Concrete Using Scanning Electron Microscopy, Annual Book of ASTM Standard. ASTM International: West Conshohocken, PA, USA, 2010.
- Ahmed, A.B.A.M. Effects of Hybridization of Fibers on The Properties and Durability of Mortar and Concrete. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2020. [Google Scholar]
- Mingli, C.; Zixing, L.; Chaopeng, X. Effectiveness of calcium carbonate whiskers in mortar for improving the abrasion resistance. Constr. Build. Mater. 2021, 295, 123583. [Google Scholar]
- Warudkar, A.; Elavenil, S.; Arunkumar, A. Assessment of abrasion resistance of concrete pavement for durability. International. J. Civ. Eng. Technol. 2018, 9, 1176–1181. [Google Scholar]
- Hsie, M.; Tu, C.; Song, P.S. Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Mater. Sci. Eng. A 2008, 494, 153–157. [Google Scholar] [CrossRef]
Cement | Soundness | Specific Surface Area (m2/kg) | Setting Time (min) | Compressive Strength (MPa) | Flexural Strength(MPa) | |||
---|---|---|---|---|---|---|---|---|
Initial | Final | 3 Days | 28 Days | 3 Days | 28 Days | |||
Experimental result | Qualified | 324 | 159 | 223 | 23.6 | 48.9 | 6.3 | 8.1 |
Chemical Compositions (%) | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|
Cement | 21.5 | 59.81 | 5.86 | 2.85 | 2.23 | 2.06 | 0.2 | 0.67 | 4.82 |
Chemical Compositions (%) | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|
Fly ash | 66.67 | 3.05 | 18.97 | 4.39 | 1.24 | 0.3 | - | - | 5.38 |
Chemical Compositions (%) | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|
Silica fume | 93.82 | 0.41 | 0.21 | 0 | 0.65 | 0.64 | 0.32 | 0.85 | 3.1 |
Chemical Compositions (%) | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|
Slag | 32.08 | 38.09 | 15.06 | 0.94 | 8.26 | 0.17 | - | - | 5.4 |
Type of Fiber | Length (mm) | Diameter (μm) | Aspect Ratio | Specific Gravity | Tensile Strength (MPa) | Elastic Modulus (MPa) |
---|---|---|---|---|---|---|
GF | 12 | 15 | 800 | 2.36 | 1300 | 4286 |
PPF | 12 | 60 | 200 | 0.91 | 486 | 4800 |
Level | (A) Total Binder (kg/m3) | (B) Fly Ash (%) | (C) Silica Fume (%) | (D) Slag (%) | (E) w/b | (F) Fiber |
---|---|---|---|---|---|---|
1 | 300 | 0 | 0 | 15 | 0.27 | 0 |
2 | 350 | 20 | 5 | 30 | 0.3 | 2%GF + 0%PPF |
3 | 400 | 30 | 0.4 | 1.6%GF + 0.4%PPF | ||
4 | 450 | 40 | 0.55 | 1.2%GF + 0.8%PPF | ||
5 | 480 | 50 | 0.58 | |||
6 | 0.62 |
Group | Mix ID | w/b | Total Binder (kg/m3) | Cement (kg/m3) | Fly Ash (kg/m3) | Silica Fume (kg/m3) | Slag (kg/m3) | Cement (%) | Fly Ash (%) | Silica Fume (%) | Slag (%) | GF (%) | PPF (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | G0PP0-0.27 | 0.27 | 450 | 180 | 135 | 0 | 135 | 40 | 30 | 0 | 30 | 0 | 0 |
G0PP0-0.30 | 0.3 | 400 | 160 | 160 | 20 | 60 | 40 | 40 | 5 | 15 | 0 | 0 | |
G0PP0-0.40 | 0.4 | 300 | 90 | 120 | 0 | 90 | 30 | 40 | 0 | 30 | 0 | 0 | |
G0PP0-0.55 | 0.55 | 450 | 67.5 | 225 | 22.5 | 135 | 15 | 50 | 5 | 30 | 0 | 0 | |
G0PP0-0.58 | 0.58 | 480 | 408 | 0 | 0 | 72 | 85 | 0 | 0 | 15 | 0 | 0 | |
G0PP0-0.62 | 0.62 | 350 | 140 | 105 | 0 | 105 | 40 | 30 | 0 | 30 | 0 | 0 | |
2 | G10PP0-0.27 | 0.27 | 350 | 157.5 | 140 | 0 | 52.5 | 45 | 40 | 0 | 15 | 2 | 0 |
G10PP0-0.30 | 0.3 | 300 | 105 | 90 | 15 | 90 | 35 | 30 | 5 | 30 | 2 | 0 | |
G10PP0-0.40 | 0.4 | 400 | 220 | 120 | 0 | 60 | 55 | 30 | 0 | 15 | 2 | 0 | |
G10PP0-0.55 | 0.55 | 350 | 280 | 0 | 17.5 | 52.5 | 80 | 0 | 5 | 15 | 2 | 0 | |
G10PP0-0.58 | 0.58 | 400 | 80 | 200 | 0 | 120 | 20 | 50 | 0 | 30 | 2 | 0 | |
G10PP0-0.62 | 0.62 | 450 | 202.5 | 180 | 0 | 67.5 | 45 | 40 | 0 | 15 | 2 | 0 | |
3 | G8PP2-0.27 | 0.27 | 400 | 60 | 200 | 20 | 120 | 15 | 50 | 5 | 30 | 1.6 | 0.4 |
G8PP2-0.30 | 0.3 | 450 | 292.5 | 90 | 0 | 67.5 | 65 | 20 | 0 | 15 | 1.6 | 0.4 | |
G8PP2-0.40 | 0.4 | 350 | 157.5 | 70 | 17.5 | 105 | 45 | 20 | 5 | 30 | 1.6 | 0.4 | |
G8PP2-0.55 | 0.55 | 480 | 192 | 144 | 0 | 144 | 40 | 30 | 0 | 30 | 1.6 | 0.4 | |
G8PP2-0.58 | 0.58 | 450 | 180 | 180 | 22.5 | 67.5 | 40 | 40 | 5 | 15 | 1.6 | 0.4 | |
G8PP2-0.62 | 0.62 | 400 | 260 | 0 | 20 | 120 | 65 | 0 | 5 | 30 | 1.6 | 0.4 | |
4 | G6PP4-0.27 | 0.27 | 300 | 180 | 60 | 15 | 45 | 60 | 20 | 5 | 15 | 1.2 | 0.8 |
G6PP4-0.30 | 0.3 | 350 | 70 | 175 | 0 | 105 | 20 | 50 | 0 | 30 | 1.2 | 0.8 | |
G6PP4-0.40 | 0.4 | 450 | 135 | 225 | 22.5 | 67.5 | 30 | 50 | 5 | 15 | 1.2 | 0.8 | |
G6PP4-0.55 | 0.55 | 400 | 180 | 160 | 0 | 60 | 45 | 40 | 0 | 15 | 1.2 | 0.8 | |
G6PP4-0.58 | 0.58 | 350 | 122.5 | 105 | 17.5 | 105 | 35 | 30 | 5 | 30 | 1.2 | 0.8 | |
G6PP4-0.62 | 0.62 | 480 | 144 | 240 | 24 | 72 | 30 | 50 | 5 | 15 | 1.2 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Jia, Y.; Yuan, Z.; Li, Z.; Sun, T.; Zhang, J. Study on the Mechanical Properties, Wear Resistance and Microstructure of Hybrid Fiber-Reinforced Mortar Containing High Volume of Industrial Solid Waste Mineral Admixture. Materials 2022, 15, 3964. https://doi.org/10.3390/ma15113964
Wu H, Jia Y, Yuan Z, Li Z, Sun T, Zhang J. Study on the Mechanical Properties, Wear Resistance and Microstructure of Hybrid Fiber-Reinforced Mortar Containing High Volume of Industrial Solid Waste Mineral Admixture. Materials. 2022; 15(11):3964. https://doi.org/10.3390/ma15113964
Chicago/Turabian StyleWu, Hao, Yanmin Jia, Zhu Yuan, Zhijia Li, Tao Sun, and Jiahao Zhang. 2022. "Study on the Mechanical Properties, Wear Resistance and Microstructure of Hybrid Fiber-Reinforced Mortar Containing High Volume of Industrial Solid Waste Mineral Admixture" Materials 15, no. 11: 3964. https://doi.org/10.3390/ma15113964
APA StyleWu, H., Jia, Y., Yuan, Z., Li, Z., Sun, T., & Zhang, J. (2022). Study on the Mechanical Properties, Wear Resistance and Microstructure of Hybrid Fiber-Reinforced Mortar Containing High Volume of Industrial Solid Waste Mineral Admixture. Materials, 15(11), 3964. https://doi.org/10.3390/ma15113964