The Strength of Pine (Pinus sylvestris L.) Sawn Timber in Correlation with Selected Wood Defects
Abstract
:1. Introduction
2. Materials and Methods
- knots_0 for sizes up to 10 mm;
- knots_1 for sizes up to 20 mm;
- knots_2 for sizes up to 30 mm;
- knots_3 for sizes over 30 mm;
- pek0 for cracks up to 1 mm;
- pek1 for cracks over 1 mm.
3. Results and Discussion
4. Conclusions
- -
- The distribution of knots in pine timber grown in western Poland is characterized by a high frequency of their distribution and considerable size. This may indicate a major variability in the quality characteristics of the raw material harvested from the pine stands.
- -
- It was examined how the intensity of sound and rotten knots in the tested material translates into the strength indicators. It was found that the share of large knots (over 30 mm) caused the most notable decrease in MOE values.
- -
- The correlation between the modulus of elasticity and the intensity of knot distribution was positive. There was no evidence of a relationship between half-rotten knots and the tested strength indicator, which, however, taking into account the small share of this defect (approx. 1%), does not confirm a lack of correlation in general.
- -
- Despite a significant share of knots with a dimension of up to 20 mm in the pine timber, the effect of their presence on the MOE results was not confirmed.
- -
- Surface cracks had a slight impact on the MOE values of the tested batch of material. On the other hand, the increase in the share of wide cracks occurring on the surface of the sawn timber significantly affected its strength. The research allowed to determine the level of crack area severity for pine materials and the impact of these defects on technical performance (achieving a specific strength).
- -
- Along with an increasing level of accuracy in the qualitative characterization of structural sawn timber, it is possible to improve semifinished product sorting efficiency with the use of surface defects analysis. The measurements based on the available image analysis systems allow to locate defects with high accuracy. They are guidelines for the creation of algorithms that allow to determine optimal solutions for the identification of pine wood strength classes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.; Zhang, Y.; Cao, J.; Song, W. Robust Optimization for Volume Variation in Timber Processing. J. For. Res. 2018, 29, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Schlotzhauer, P.; Kovryga, A.; Emmerich, L.; Bollmus, S.; Van de Kuilen, J.-W.; Militz, H. Analysis of Economic Feasibility of Ash and Maple Lamella Production for Glued Laminated Timber. Forests 2019, 10, 529. [Google Scholar] [CrossRef] [Green Version]
- Mirski, R.; Wieruszewski, M.; Trociński, A.; Kawalerczyk, J.; Łabęda, K. Elastic Moduli of Butt-End Logs and the Variable Knots Distribution in Scots Pine from Western Poland. BioResources 2021, 16, 1842. [Google Scholar] [CrossRef]
- Mirski, R.; Dziurka, D.; Kuliński, M.; Trociński, A.; Kawalerczyk, J.; Antonowicz, R. Strength Properties of Structural Glulam Manufactured from Pine (Pinus sylvestris L.) Side Boards. Materials 2021, 14, 7312. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, E.; Longuetaud, F.; Mothe, F.; Ung, C.; Auty, D.; Achim, A. Modelling Knot Morphology as a Function of External Tree and Branch Attributes. Can. J. For. Res. 2013, 43, 266–277. [Google Scholar] [CrossRef]
- Purba, C.Y.C.; Pot, G.; Viguier, J.; Ruelle, J.; Denaud, L. The Influence of Veneer Thickness and Knot Proportion on the Mechanical Properties of Laminated Veneer Lumber (LVL) Made from Secondary Quality Hardwood. Eur. J. Wood Wood Prod. 2019, 77, 393–404. [Google Scholar] [CrossRef] [Green Version]
- Klepacka, A.M.; Florkowski, W.J. The wood pellet sector, barriers to growth and opinions of manufacturers in Poland. Probl. World Agric. 2019, 19, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Stapel, P.; Van De Kuilen, J.W.G. Effects of grading procedures on the scatter of characteristic values of European grown sawn timber. Mater. Struct. 2013, 46, 1587–1589. [Google Scholar] [CrossRef]
- Kovryga, A.; Khaloian Sarnaghi, A.; Van de Kuilen, J.W.G. Strength grading of hardwoods using transversal ultrasound. Eur. J. Wood Wood Prod. 2020, 78, 951–960. [Google Scholar] [CrossRef]
- Chmielowski, J.; Kozakiewicz, P.; Buraczyk, W. Variability of Annual Rings and Density of Scots Pine (Pinus sylvestris L.) Wood of Bolewice Origin from the Provenance Surface in Rogów. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2018, 102, 11–15. [Google Scholar]
- Laskowska, A.; Kozakiewicz, P.; Zbieć, M.; Zatoń, P.; Oleńska, S.; Beer, P. Surface Characteristics of Scots Pine Veneers Produced with a Peeling Process in Industrial Conditions. BioResources 2018, 13, 8342–8357. [Google Scholar] [CrossRef]
- Baltrušaitis, A. Investigation of Influence of Knots on Short-and Long-Term Strength of Glulam Beams. In Proceedings of the 6th World Conference on Timber Engineering, Whistler Resort, BC, Canada, 31 July–3 August 2000; Volume 31. [Google Scholar]
- Burawska, I.; Jachowicz, P.; Zbiec, M.; Grzeskiewicz, M. Local Reinforcement of Naturally Defected Structural Lumber. Ann. Wars. Univ. Life Sci.-SGGW For. Wood Technol. 2014, 87, 25–34. [Google Scholar]
- Burawska, I.; Zbiec, M.; Kalicinski, J.; Beer, P. Technical Simulation of Knots in Structural Wood. Ann. Wars. Univ. Life Sci.-SGGW For. Wood Technol. 2013, 82, 105–112. [Google Scholar]
- Wdowiak, A. Assessment of Technical Condition of Wooden Structures. In Proceedings of the Transcom, Žilina, Slovakia, 22–24 June 2015; pp. 326–332. [Google Scholar]
- Brol, J.; Nowak, T.; Wdowiak, A. Numerical Analysis and Modelling of Timber Elements Strengthened with FRP Materials. Ann. Wars. Univ. Life Sci. SGGW For. Wood Technol. 2018, 104, 274–282. [Google Scholar]
- Buchelt, B.; Wagenführ, A.; Dietzel, A.; Raßbach, H. Quantification of Cracks and Cross-Section Weakening in Sliced Veneers. Eur. J. Wood Wood Prod. 2018, 76, 381–384. [Google Scholar] [CrossRef]
- Lukacevic, M.; Füssl, J.; Eberhardsteiner, J. Discussion of Common and New Indicating Properties for the Strength Grading of Wooden Boards. Wood Sci. Technol. 2015, 49, 551–576. [Google Scholar] [CrossRef]
- Olofsson, L.; Broman, O.; Skog, J.; Fredriksson, M.; Sandberg, D. Multivariate Product Adapted Grading of Scots Pine Sawn Timber for an Industrial Customer, Part 1: Method Development. Wood Mater. Sci. Eng. 2019, 14, 428–436. [Google Scholar] [CrossRef] [Green Version]
- Ridley-Ellis, D.; Stapel, P.; Baño, V. Strength Grading of Sawn Timber in Europe: An Explanation for Engineers and Researchers. Eur. J. Wood Wood Prod. 2016, 74, 291–306. [Google Scholar] [CrossRef]
- Martins, C.E.J.; Dias, A.M.P.G.; Marques, A.F.S.; Dias, A.M.A. Non-Destructive Methodologies for Assessment of the Mechanical Properties of New Utility Poles. BioResources 2017, 12, 2269–2283. [Google Scholar] [CrossRef] [Green Version]
- Briggert, A.; Olsson, A.; Oscarsson, J. Three-Dimensional Modelling of Knots and Pith Location in Norway Spruce Boards Using Tracheid-Effect Scanning. Eur. J. Wood Wood Prod. 2016, 74, 725–739. [Google Scholar] [CrossRef]
- Dahlen, J.; Montes, C.; Eberhardt, T.L.; Auty, D. Probability Models That Relate Nondestructive Test Methods to Lumber Design Values of Plantation Loblolly Pine. For. Int. J. For. Res. 2018, 91, 295–306. [Google Scholar] [CrossRef]
- Johansson, E.; Johansson, D.; Skog, J.; Fredriksson, M. Automated Knot Detection for High Speed Computed Tomography on Pinus sylvestris L. and Picea abies (L.) Karst. Using Ellipse Fitting in Concentric Surfaces. Comput. Electron. Agric. 2013, 96, 238–245. [Google Scholar] [CrossRef]
- Lam, F.; Barrett, J.D.; Nakajima, S. Influence of Knot Area Ratio on the Bending Strength of Canadian Douglas Fir Timber Used in Japanese Post and Beam Housing. J. Wood Sci. 2005, 51, 18–25. [Google Scholar] [CrossRef]
- Schajer, G.S. Lumber Strength Grading Using X-ray Scanning. For. Prod. J. 2001, 51, 43–50. [Google Scholar]
- Roblot, G.; Bléron, L.; Mériaudeau, F.; Marchal, R. Automatic Computation of the Knot Area Ratio for Machine Strength Grading of Douglas-Fir and Spruce Timber. Eur. J. Environ. Civ. Eng. 2010, 14, 1317–1332. [Google Scholar] [CrossRef]
- Hu, Q.; Gao, Y.; Meng, X.; Diao, Y. Axial Compression of Steel–Timber Composite Column Consisting of H-Shaped Steel and Glulam. Eng. Struct. 2020, 216, 110561. [Google Scholar] [CrossRef]
- Lin, W.; Wang, J.; Sharma, B. Development of an Optimal Three-Dimensional Visualization System for Rough Lumber Edging and Trimming in Central Appalachia. For. Prod. J. 2011, 61, 401–410. [Google Scholar] [CrossRef]
- Krzosek, S. Timber Strength Grading of Pinus sylvestris L. Using a Visual Method According to Polish Standard PN-82/D-94021 and German Standard DIN 4074. Wood Res. 2011, 56, 435–440. [Google Scholar]
- Krzosek, S.; Bacher, M. Aktueller Stand Der Maschinellen Festigkeitssortierung von Schnittholz in Polen Und in Europa. Ann. Wars. Univ. Life Sci.-SGGW For. Wood Technol. 2011, 74, 254–259. [Google Scholar]
- Kabir, M.F.; Schmoldt, D.L.; Schafer, M.E. Time Domain Ultrasonic Signal Characterization for Defects in Thin Unsurfaced Hardwood Lumber. Wood Fiber Sci. 2002, 34, 165–182. [Google Scholar]
- Yaitskova, N.; Nadkernychnyy, Y.; Franjga, R.; Monroy Gonzalez Plata, R. TUS: A Breadboard for Development of New Wood Grading Algorithms Using Ultrasound. 2015. Available online: https://www.researchgate.net/publication/272664728_TUS_a_breadboard_for_development_of_new_wood_grading_algorithms_using_ultrasound (accessed on 24 April 2022).
- Strobel, J.R.A.; de Carvalho, M.A.G.; Gonçalves, R.; Pedroso, C.B.; dos Reis, M.N.; Martins, P.S. Quantitative Image Analysis of Acoustic Tomography in Woods. Eur. J. Wood Wood Prod. 2018, 76, 1379–1389. [Google Scholar] [CrossRef]
- Görlacher, R. Ein Neues Messverfahren Zur Bestimmung Des Elastizitätsmoduls von Holz. Eur. J. Wood Wood Prod. 1984, 42, 219–222. [Google Scholar] [CrossRef]
- Görlacher, R. Brettsperrholz–Berechnung von Elementen Mit Kreuzweise Verklebten Brettern Bei Beanspruchung in Plattenebene. In Ingenieurholzbau, Karlsruher Tage; Bruderverlag: Karlsr, Germany, 2002. [Google Scholar]
- Schickhofer, G.; Hasewend, B.; Katzengruber, R. Brettsperrholz-Anwendungen und Konstruktionsdetails Im Mehrgeschossigen Wohn-Und Kommunalbau. In Ingenieurholzbau, Karlsruher Tage; Bruderverlag: Karlsr, Germany, 2002; pp. 285–305. [Google Scholar]
- Steiger, R. Mechanische Eigenschaften von Schweizer Fichten-Bauholz bei Biege-, Zug-, Druck-und Kombinierter M/N Beanspruchung: Sortierung von Rund-Und Schnittholz Mittels Ultraschall; ETH Zurich: Zürich, Switzerland, 1996; Volume 221, ISBN 3-7643-5477-1. [Google Scholar]
- Lindström, H.; Reale, M.; Grekin, M. Using Non-Destructive Testing to Assess Modulus of Elasticity of Pinus sylvestris Trees. Scand. J. For. Res. 2009, 24, 247–257. [Google Scholar] [CrossRef]
- Yamamoto, K.; Sulaiman, O.; Hashim, R. Nondestructive Detection of Heart Rot of Acacia Mangium Trees in Malaysia. For. Prod. J. 1998, 48, 83. [Google Scholar]
- Unterwieser, H.; Schickhofer, G. Influence of Moisture Content of Wood on Sound Velocity and Dynamic MOE of Natural Frequency-and Ultrasonic Runtime Measurement. Eur. J. Wood Wood Prod. 2011, 69, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Baar, J.; Tippner, J.; Gryc, V. The Influence of Wood Density on Longitudinal Wave Velocity Determined by the Ultrasound Method in Comparison to the Resonance Longitudinal Method. Eur. J. Wood Wood Prod. 2012, 70, 767–769. [Google Scholar] [CrossRef]
- Fabisiak, E.; Moliński, W.; Roszyk, E. The Propagation Velocity of Ultrasound Waves along the Grain in the Juvenile and Mature, Normal and Reaction Wood of Pine (Pinus sylvestris L.). Ann. Wars. Univ. Life Sci.-SGGW For. Wood Technol. 2007, 62, 200–206. [Google Scholar]
- Misztal, B. Forecasting in Time of Rheological Defections of Truss Girders, Consolidated from Wood, Wood-Based Material and Steel. In Proceedings of the 9th World Conference on Timber Engineering, Portland, OR, USA, 6–10 August 2006. [Google Scholar]
- Dunaj, P.; Berczyński, S.; Miądlicki, K.; Irska, I.; Niesterowicz, B. Increasing Damping of Thin-Walled Structures Using Additively Manufactured Vibration Eliminators. Materials 2020, 13, 2125. [Google Scholar] [CrossRef]
- Misztal, B. Dynamic Parameters of the Free Vibrations of Various Wood Species. Architectus 2012, 1, 125–128. [Google Scholar]
- Mirski, R.; Trociński, A.; Kawalerczyk, J.; Wieruszewski, M. Pine Logs Sorting as a Function of Bark Thickness. Forests 2021, 12, 893. [Google Scholar] [CrossRef]
- Krzosek, S. Strength Trading of Polish Pine Structural Sawn Timber; Rozprawy Naukowe i Monografie; Szkola Glowna Gospodarstwa Wiejskiego: Warsaw, Poland, 2009. [Google Scholar]
- Wagenführ, A.; Buchelt, B.; Pfriem, A. Material Behaviour of Veneer during Multidimensional Moulding. Eur. J. Wood Wood Prod. 2006, 64, 83–89. [Google Scholar] [CrossRef]
- Chauhan, S.; Sethy, A. Differences in Dynamic Modulus of Elasticity Determined by Three Vibration Methods and Their Relationship with Static Modulus of Elasticity. Maderas. Cienc. Tecnol. 2016, 18, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Montero García-Andrade, M.J. Clasificación de Madera Estructural de Gran Escuadría de Pinus sylvestris L. Mediante Métodos No Destructivos, Montes. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2013. [Google Scholar]
- Sikorska, E.; Lasota, J. Typologiczny System Klasyfikacji Siedlisk a Fitosocjologiczna Ocena Siedlisk. Studia i Materiały Centrum Edukacji Przyrodniczo-Leśnej 2007, 9, 44–51. [Google Scholar]
- Brożek, S.; Zwydak, M. Atlas Gleb Leśnych Polski; Centrum Informacyjne Lasów Państwowych: Warsaw, Poland, 2010; ISBN 83-61633-30-8. [Google Scholar]
- Sensuła, B.; Wilczyński, S.; Opała, M. Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus sylvestris L.) Growing in the near-Source Region of the Combined Heat and Power Plant during the Development of the pro-Ecological Strategy in Poland. Water Air Soil Pollut. 2015, 226, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EN 384:2016; Structural Timber. Determination of Characteristic Values of Mechanical Properties and Density. European Committee for Standardization: Brussels, Belgium, 2016.
- Lukacevic, M.; Kandler, G.; Hu, M.; Olsson, A.; Füssl, J. A 3D Model for Knots and Related Fiber Deviations in Sawn Timber for Prediction of Mechanical Properties of Boards. Mater. Des. 2019, 166, 107617. [Google Scholar] [CrossRef]
- Wright, S.; Dahlen, J.; Montes, C.; Eberhardt, T.L. Quantifying Knots by Image Analysis and Modeling Their Effects on the Mechanical Properties of Loblolly Pine Lumber. Eur. J. Wood Wood Prod. 2019, 77, 903–917. [Google Scholar] [CrossRef]
- Olsson, A.; Pot, G.; Viguier, J.; Faydi, Y.; Oscarsson, J. Performance of Strength Grading Methods Based on Fibre Orientation and Axial Resonance Frequency Applied to Norway Spruce (Picea abies L.), Douglas Fir (Pseudotsuga menziesii (Mirb.) Franco) and European Oak (Quercus petraea (Matt.) Liebl./Quercus robur L.). Ann. For. Sci. 2018, 75, 102. [Google Scholar]
- Schlotzhauer, P.; Wilhelms, F.; Lux, C.; Bollmus, S. Comparison of Three Systems for Automatic Grain Angle Determination on European Hardwood for Construction Use. Eur. J. Wood Wood Prod. 2018, 76, 911–923. [Google Scholar] [CrossRef]
- Sandoz, J.L. Grading of Construction Timeber by Ultrasound. Wood Sci. Technol. 1989, 23, 95–108. [Google Scholar] [CrossRef]
- Olsson, A.; Oscarsson, J. Strength Grading on the Basis of High Resolution Laser Scanning and Dynamic Excitation: A Full Scale Investigation of Performance. Eur. J. Wood Wood Prod. 2017, 75, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zeng, W.; Liu, W.; Zhang, H.; Wang, X. Crack Propagation and Fracture Process Zone (FPZ) of Wood in the Longitudinal Direction Determined Using Digital Image Correlation (DIC) Technique. Remote Sens. 2019, 11, 1562. [Google Scholar] [CrossRef] [Green Version]
- Hossein, M.A.; Shahverdi, M.; Roohnia, M. The Effect of Wood Knot as a Defect on Modulus of Elasticity (MOE) and Damping Correlation. Not. Sci. Biol. 2011, 3, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Xu, P. Estimating the Influence of Knots on the Local Longitudinal Stiffness in Radiata Pine Structural Timber. Wood Sci. Technol. 2002, 36, 501–509. [Google Scholar] [CrossRef]
- Dong, W.; Wu, Z.; Zhou, X.; Wang, N.; Kastiukas, G. An Experimental Study on Crack Propagation at Rock-Concrete Interface Using Digital Image Correlation Technique. Eng. Fract. Mech. 2017, 171, 50–63. [Google Scholar] [CrossRef]
- Steiger, R.; Gülzow, A.; Gsell, D. Non Destructive Evaluation of Elastic Material Properties of Crosslaminated Timber (CLT). In Proceedings of the Conference COST E53, Delft, The Netherlands, 29–30 October 2008; Volume 53, pp. 29–30. [Google Scholar]
- Du, H.; Hu, X.; Xie, Z.; Meng, Y. Experimental and Analytical Investigation on Fire Resistance of Glulam-Concrete Composite Beams. J. Build. Eng. 2021, 44, 103244. [Google Scholar] [CrossRef]
- Oh, J.-K.; Kim, K.-M.; Lee, J.-J. Use of Adjacent Knot Data in Predicting Bending Strength of Dimension Lumber by X-ray. Wood Fiber Sci. 2010, 42, 10–20. [Google Scholar]
- Du, X.; Li, J.; Feng, H.; Chen, S. Image Reconstruction of Internal Defects in Wood Based on Segmented Propagation Rays of Stress Waves. Appl. Sci. 2018, 8, 1778. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Wang, L.; Wacker, J.P.; Zhu, Z. Electric Resistance Tomography and Stress Wave Tomography for Decay Detection in Trees—A Comparison Study. PeerJ 2019, 7, e6444. [Google Scholar] [CrossRef]
Property | Moisture Content (%) | Density for MC of 12% (kg/m3) | MOE for MC of 12% (kN/mm2) |
---|---|---|---|
Average value | 13.0 | 500.7 | 10,656 |
Minimum value | 11.9 | 428.6 | 7674 |
Maximum value | 14.1 | 545.8 | 12,835 |
Standard deviation | 0.5 | 30.3 | 1344 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieruszewski, M.; Trociński, A.; Kawalerczyk, J.; Derkowski, A.; Mirski, R. The Strength of Pine (Pinus sylvestris L.) Sawn Timber in Correlation with Selected Wood Defects. Materials 2022, 15, 3974. https://doi.org/10.3390/ma15113974
Wieruszewski M, Trociński A, Kawalerczyk J, Derkowski A, Mirski R. The Strength of Pine (Pinus sylvestris L.) Sawn Timber in Correlation with Selected Wood Defects. Materials. 2022; 15(11):3974. https://doi.org/10.3390/ma15113974
Chicago/Turabian StyleWieruszewski, Marek, Adrian Trociński, Jakub Kawalerczyk, Adam Derkowski, and Radosław Mirski. 2022. "The Strength of Pine (Pinus sylvestris L.) Sawn Timber in Correlation with Selected Wood Defects" Materials 15, no. 11: 3974. https://doi.org/10.3390/ma15113974
APA StyleWieruszewski, M., Trociński, A., Kawalerczyk, J., Derkowski, A., & Mirski, R. (2022). The Strength of Pine (Pinus sylvestris L.) Sawn Timber in Correlation with Selected Wood Defects. Materials, 15(11), 3974. https://doi.org/10.3390/ma15113974