Hardening of Bimetallic Wires from Secondary Materials Used in the Construction of Power Lines
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kulchitskiy, A.; Bazhin, Y.; Kadrov, N. Complex control of the state of steel pins in soderberg electrolytic cells by using computer vision systems. Tsvetnye Met. 2018, 3, 27. [Google Scholar]
- Bazhin, V.Y.; Issa, B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. J. Min. Inst. 2021, 249, 393. [Google Scholar] [CrossRef]
- Vasilyeva, M.; Nagornov, D.; Orlov, G. Research on dynamic and mechanical properties of magnetoactive elastomers with high permeability magnetic filling agent at complex magneto-temperature exposure. Materials 2021, 14, 2376. [Google Scholar] [CrossRef] [PubMed]
- Galkin, V.I.; Koltyrin, A.N. Investigation of probabilistic models for forecasting the efficiency of proppant hydraulic fracturing technology. J. Min. Inst. 2020, 246, 650. [Google Scholar] [CrossRef]
- Nazarenko, M.Y.; Saltykova, S.N.; Rudko, V.A. Production of Isotropic Coke from Shale Tar at Various Parameters of the Delayed Coking Process. ACS Omega 2021, 6, 22173. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Fediuk, R.; Kolesnikova, O.; Zhanikulov, N.; Zhakipbayev, B.; Kuraev, R.; Akhmetova, E.; Shal, A. Processing of Waste from Enrichment with the Production of Cement Clinker and the Extraction of Zinc. Materials 2022, 15, 324. [Google Scholar] [CrossRef]
- Fediuk, R.; Mosaberpanah, M.A.; Lesovik, V. Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers. Adv. Concr. Constr. 2020, 9, 387. [Google Scholar]
- Maksarov, V.V.; Olt, J.; Keksin, A.I. The use of composite powders in the process of magnetic-abrasive finishing of taps to improve the quality of threads in articles made of corrosion-resistant steels. Chernye Met. 2022, 49, 49–55. [Google Scholar] [CrossRef]
- Milyuts, V.G.; Tsukanov, V.V.; Pryakhin, E.I. Development of manufacturing technology for high-strength hull steel reducing production cycle and providing high-quality sheets. J. Min. Inst. 2019, 239, 536. [Google Scholar] [CrossRef]
- Smoliakov, A.; Muraviov, A. Mechanical properties of fiber-reinforced concrete using composite binders. Adv. Mater. Sci. Eng. 2017, 2017, 2316347. [Google Scholar]
- Chernysheva, N.; Lesovik, V.; Vatin, N. Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC). Materials 2020, 13, 3847. [Google Scholar] [CrossRef] [PubMed]
- Berski, S.; Dyja, H.; Banaszek, G.; Janik, M. Theoretical analysis of bimetallic rods extrusion process in double reduction die. J. Mater. Process. Technol. 2004, 153–154, 583. [Google Scholar] [CrossRef]
- Martínez, G.A.S.; dos Santos, E.F.; Kabayama, L.K.; Guidi, E.S.; Silva, F.D. Influences of different die bearing geometries on the wire-drawing process. Metals 2019, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Klyuev, S.; Sabitov, L.; Volokitin, A.; Zhuniskaliyev, T.; Kelamanov, B.; Yessengalie, V.D.; Yerzhanov, A.; Kolesnikova, O. Study of the Properties of Antifriction Rings under Severe Plastic Deformation. Materials 2022, 15, 2584. [Google Scholar] [CrossRef]
- Acarer, M. Electrical, corrosion, and mechanical properties of aluminum-copper joints produced by explosive welding. J. Mater. Eng. Perform. 2012, 21, 2375–2379. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chen, H.-L.; Hwang, W.-S. Influence of interfacial structure development on the fracture mechanism and bond strength of aluminum/copper bimetal plate. Mater. Trans. 2006, 47, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, J.; Shan, D.; Guo, B. Microstructural evolution and micro/meso-deformation behavior in pure copper processed by equal-channel angular pressing. Mater. Sci. Eng. A 2016, 664, 114–125. [Google Scholar] [CrossRef]
- Kolesnikov, A.; Fediuk, R.; Amran, M.; Klyuev, S.; Klyuev, A.; Volokitina, I.; Naukenova, A.; Shapalov, S.; Utelbayeva, A.; Kolesnikova, O.; et al. Modeling of Non-Ferrous Metallurgy Waste Disposal with the Production of Iron Silicides and Zinc Distillation. Materials 2022, 15, 2542. [Google Scholar] [CrossRef]
- Zgonnik, P.V.; Kuzhaeva, A.A.; Berlinskiy, I.V. The Study of Metal Corrosion Resistance near Weld Joints When Erecting Building and Structures Composed of Precast Structures. Appl. Sci. 2022, 12, 2518. [Google Scholar] [CrossRef]
- Beloglazov, I.I.; Petrov, P.A.; Gorlenkov, D.V. Development of an Algorithm for Control Metallurgical Processes of Fluidized Roasting Using an Adaptive Controller. J. Phys. Conf. Ser. 2018, 1059, 1. [Google Scholar] [CrossRef]
- Nadirov, K.S.; Zhantasov, M.K.; Sakybayev, B.A. The study of the gossypol resin impact on adhesive properties of the intermediate layer of the pipeline three-layer rust protection coating. Inter. J. Adhes. Adhesiv. 2017, 78, 195–199. [Google Scholar] [CrossRef]
- Kadyrov, E.D.; Koteleva, N.I. Introducing neural-network algorithms into an automated system designed to control metallurgical processes. Metallurgist 2011, 54, 799. [Google Scholar] [CrossRef]
- Prokopchuk, N.R.; Globa, A.I.; Laptik, I.O. The properties of metal coatings enhanced with diamond nanoparticles. Tsvetnye Met. 2021, 2021, 50. [Google Scholar] [CrossRef]
- Litvinenko, V.S. Digital Economy as a Factor in the Technological Development of the Mineral Sector. Nat. Resour. Res. 2020, 29, 1521. [Google Scholar] [CrossRef]
- Mythili, R.; Kirana, R.; Herojit Singh, L.; Govindaraj, R.; Sinha, A.; Singh, M.; Saroja, S.; Vijayalakshmi, M.; Deb, S. Identification of Retained Austenite in 9Cr-1.4W-0.06Ta-0.12C Reduced Activation Ferritic Martensitic Steel. Symmetry 2022, 14, 196. [Google Scholar] [CrossRef]
- Muszka, K.; Zych, D.; Lisiecka-Graca, P.; Madej, L.; Majta, J. Experimental and Molecular Dynamic Study of Grain Refinement and Dislocation Substructure Evolution in HSLA and IF Steels after Severe Plastic Deformation. Metals 2020, 10, 1122. [Google Scholar] [CrossRef]
- Xu, C.; Horita, Z.; Langdon, T.G. The evolution of homogeneity in processing by high-pressure torsion. Acta Mater. 2007, 55, 203–212. [Google Scholar] [CrossRef]
- Vasilyeva, N.; Fedorova, E.; Kolesnikov, A. Big Data as a Tool for Building a Predictive Model of Mill Roll Wear. Symmetry 2021, 13, 859. [Google Scholar] [CrossRef]
- Bratov, V.; Borodin, E.N. Comparison of dislocation density based approaches for prediction of defect structure evolution in aluminium and copper processed by ECAP. Mater. Sci. Eng. A 2015, 631, 10–17. [Google Scholar] [CrossRef]
- Lesovik, R.V.; Klyuyev, S.V.; Klyuyev, A.V.; Netrebenko, A.V.; Durachenko, A.V. High-strength fiber-reinforced concrete containing techno genic raw materials and composite binders with use of nanodispersed powder. Res. J. Appl. Sci. 2014, 9, 1153–1157. [Google Scholar]
- Murashkin, M.Y.; Sabirov, I.; Kazykhanov, V.U. Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 2013, 48, 4501–4509. [Google Scholar] [CrossRef]
- Chukin, M.V.; Korchunov, A.G.; Polyakova, M.A.; Emaleeva, D.G. Forming ultrafine-grain structure in steel wire by continuous deformation. Steel Transl. 2010, 40, 595–597. [Google Scholar] [CrossRef]
- Khezhev, T.A.; Pukharenko, Y.V.; Khezhev, K.A.; Klyuev, S.V. Fiber gypsum concrete composites with using volcanic tuffsawing waste. ARPN J. Eng. Appl. Sci. 2018, 13, 2935–2946. [Google Scholar]
- Bachmaier, A.; Grosdidier, T.; Ivanisenko, Y. Severe Plastic Deformation and Thermomechanical Processing: Nanostructuring and Properties. Metals 2020, 10, 1306. [Google Scholar] [CrossRef]
- Verma, D.P.; Pandey, S.A.; Bansal, A.; Upadhyay, S.; Mukhopadhyay, N.K.; Sastry, G.V.S.; Manna, R. Bulk Ultrafine-Grained Interstitial-Free Steel Processed by Equal-Channel Angular Pressing Followed by Flash Annealing. J. Mater. Eng. Perform. 2016, 25, 5157–5166. [Google Scholar] [CrossRef] [Green Version]
- Volokitina, I.; Kurapov, G. Effect of Initial Structural State on Formation of Structure and Mechanical Properties of Steels under ECAP. Met. Sci. Heat Treat. 2018, 59, 786–792. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Langdon, T.G. The characteristics of grain refinement in materials processed by severe plastic deformation. Rev. Adv. Mater. Sci. 2006, 13, 6–14. [Google Scholar]
- Naizabekov, A.; Volokitina, I. Effect of the Initial Structural State of Cr–Mo High-Temperature Steel on Mechanical Properties after Equal-Channel Angular Pressing. Phys. Met. Met. 2019, 120, 177–183. [Google Scholar] [CrossRef]
- Shimov, G.V.; Bogatov, A.A.; Kovin, D.S. FEM Simulation of Copper Busbar Pressing on the Continuous Extrusion Line “Conform”. Solid State Phenom. 2018, 284, 547–551. [Google Scholar] [CrossRef]
- Naizabekov, A.; Arbuz, A.; Lezhnev, S.; Panin, E. The effect of preliminary and final heat treatment in course of the combined “rolling-pressing” process realization on microstructure evolution of copper. J. Chem. Technol. Metall. 2016, 51, 315–321. [Google Scholar]
- Lezhnev, S.; Naizabekov, A.; Panin, E.; Volokitina, I.; Arbuz, A. The development and testing of a new method of qualitative analysis of the microstructure quality, for example of steel AISI 321 subjected to radial shear rolling. Phys. Scr. 2019, 94, 105702. [Google Scholar]
- Li, J.; Mei, Q.; Li, Y. Wang, B. Production of Surface Layer with Gradient Microstructure and Microhardess on Copper by High Pressure Surface Rolling. Metals 2020, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Raab, G.; Valiev, R.; Lowe, T.; Zhu, Y. Continuous processing of ultrafine grained A1 by ECAP-Conform. Mater. Sci. Eng. 2004, 382, 30–34. [Google Scholar] [CrossRef]
- Hwang, S.; Jin, Y.; Son, I.; Rhee, K.; Lee, D.; Im, Y. Flow characteristics of continuous shear drawing of high carbon steel. Int. J. Mech. Sci. 2011, 53, 479–484. [Google Scholar] [CrossRef]
- Avitzur, B. Methods of and Apparatus for Production of Wire. U.S. Patent No. 3,934,446, 27 January 1976. [Google Scholar]
- Avitzur, B. Extrolling: Combine Extrusion and Rolling. Wire Technol. 1974, 3, 55–58. [Google Scholar]
- Muszka, K.; Wielgus, M.; Doniec, K.; Stefanska-Kadziela, M. Influence of strain changes on microstructure inhomogeneity and mechanical behavior of wire drawing products. Mater. Sci. Forum 2010, 654, 314–317. [Google Scholar] [CrossRef]
- Chukin, M.; Emaleeva, D.; Baryshnikov, M.; Poljakova, M. Method of Producing Long Round Billets with Ultrafine Granular Structure. Patent of RF No. 2446027, 31 May 2010. [Google Scholar]
- Chukin, M.; Poljakova, M.; Golubchik, E.; Rudakov, V.; Noskov, S.; Gulin, A. Method of Making Ultrafine Semis by Drawing with Twisting. Patent of RF No. 2467816, 27 November 2012. [Google Scholar]
- Raab, G.; Raab, A. Device for Drawing and Production of Ultrafine-Grained Semi-Finished Products. Patent of RF No. 2347632, 27 February 2009. [Google Scholar]
- Chukin, M.; Emaleeva, D. The influence of heat treatment on the evolution of the structure and properties of steel wire in the process of ECAP broaching. Bull. MSTU. G.I. Nosova 2008, 2, 70–71. [Google Scholar]
- Volokitina, I.; Volokitin, A. Evolution of the Microstructure and Mechanical Properties of Copper during the Pressing–Drawing Process. Phys. Met. Met. 2018, 119, 917–921. [Google Scholar] [CrossRef]
- Volokitin, A.; Naizabekov, A.; Lezhnev, S. Research of a new method of deformation—Pressing–drawing on mechanical properties of steel wire. In Proceedings of the Metal 2013—22nd International Conference on Metallurgy and Materials, Conference Proceedings, Brno, Czech Republic, 15–17 May 2013; pp. 376–379. [Google Scholar]
- Lezhnev, S.; Naizabekov, A.; Volokitin, A.; Volokitina, I.; Panin, E.; Knapinski, M. Development and research of combined process of “equal channel angular pressing–drawing”. J. Chem. Technol. Metall. 2017, 52, 172–179. [Google Scholar]
- Pryakhin, E.I.; Sharapova, D.M. Understanding the structure and properties of the heat affected zone in welds and model specimens of high-strength low-alloy steels after simulated heat cycles. CIS Iron Steel Rev. 2020, 19, 60. [Google Scholar] [CrossRef]
- Deshpande, A.; Tofangchi, A.; Hsu, K. Microstructure evolution of Al6061 and copper during ultrasonic energy assisted compression. Mater. Charact. 2019, 153, 240. [Google Scholar] [CrossRef]
- Peng, H.; Chen, D.; Jiang, X. Microstructure and mechanical properties of an ultrasonic spot welded aluminum alloy: The effect of welding energy. Materials 2017, 10, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volokitina, I.; Vasilyeva, N.; Fediuk, R.; Kolesnikov, A. Hardening of Bimetallic Wires from Secondary Materials Used in the Construction of Power Lines. Materials 2022, 15, 3975. https://doi.org/10.3390/ma15113975
Volokitina I, Vasilyeva N, Fediuk R, Kolesnikov A. Hardening of Bimetallic Wires from Secondary Materials Used in the Construction of Power Lines. Materials. 2022; 15(11):3975. https://doi.org/10.3390/ma15113975
Chicago/Turabian StyleVolokitina, Irina, Natalia Vasilyeva, Roman Fediuk, and Alexandr Kolesnikov. 2022. "Hardening of Bimetallic Wires from Secondary Materials Used in the Construction of Power Lines" Materials 15, no. 11: 3975. https://doi.org/10.3390/ma15113975
APA StyleVolokitina, I., Vasilyeva, N., Fediuk, R., & Kolesnikov, A. (2022). Hardening of Bimetallic Wires from Secondary Materials Used in the Construction of Power Lines. Materials, 15(11), 3975. https://doi.org/10.3390/ma15113975