Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Studies
2.2. MEP Model Development
3. Results and Discussion
3.1. Strength Characteristics
3.1.1. Effect of Alkali Contamination
3.1.2. Effect of FA Dosage and Curing Period
3.2. Comparison between Experimental and Predicted Results
3.3. Model Validity
Sensitivity Analysis and Parametric Study of MEP Model
4. Conclusions
- The inundation of kaolin and BC soils in alkali solution caused the UCS property to decrease. The higher concentrations posed a significant impact in lowering the UCSkaolin and UCSBC. On the contrary, the FA treatment of alkali-contaminated soils resulted in a linear increase in the UCSkaolin and UCSBC, and an increase of 7-fold was witnessed for the BC soil. Hence, it is concluded that the alkali contamination acted as an activator for a subsequent pozzolanic reaction when FA was incorporated.
- In order to obtain the optimal MEP model for predicting the UCSkaolin and UCSBC, a total of 18 trials (each) were undertaken while considering the variation in (a) number of subpopulations, (b) subpopulation size, (c) code length, (d) tournament size, and (e) number of generations. The corresponding performance of all the trials was evaluated using a variety of performance indices, i.e., correlation coefficient and averaged MSE value. The best MEP model (kaolin and BC soil) was achieved in the case of 20 and 70 subpopulations, 1000 and 50 subpopulation size, 100 each code length, 6 each tournament size, 150 and 100 number of generations, 0.9465 and 0.9538 R-value, and 1245 kPa and 4400 kPa averaged MSE value, respectively.
- Simple regression equations developed in this study (Equations (1) and (2)) for kaolin and BC contaminated soils can readily be used to forecast the UCS property. The equations have been generated from relatively high accuracy models evaluated using R, MAE, RMSE, and RSE (0.937, 19.6, 18.271, 0.128 and 0.956, 30, 17.151, 0.108) for the training data of kaolin and BC soils, respectively.
- The generated models were evaluated using parametric and sensitivity analysis as second-level validation. The results obtained from the parametric study manifested a variation in UCS conforming to the literature for kaolin and BC soil with the change in the given input parameters. The sensitivity analysis of kaolin soil showed that curing period and alkali concentration had comparable contributions, followed by the FA dosage, whereas for BC, soil the following increasing trend was observed: curing period > alkali concentration > FA dosage.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rao, S.; Rao, K.S. Ground Heave from Caustic Soda Solution Spillage—A Case Study. Soils Found. 1994, 34, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Sivapullaiah, P.V.; Manju, M. Effect of zeolitization on the volume-change behaviour of kaolinitic soils. Can. Geotech. J. 2006, 43, 969–978. [Google Scholar] [CrossRef]
- Sivapullaiah, P.V. Manju Ferric chloride treatment to control alakli induced heave in weathered red earth. Geotech. Geol. Eng. 2006, 24, 1115–1130. [Google Scholar] [CrossRef]
- Sivapullaiah, P.; Reddy, P.H.P. Fly ash to control alkali-induced volume changes in soils. Proc. Inst. Civ. Eng.-Ground Improv. 2009, 162, 167–173. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: New York, NY, USA, 2005; Volume 3. [Google Scholar]
- Sivapullaiah, P.V.; Sankara, G.; Allam, M.M. Mineralogical changes and geotechnical properties of an expansive soil interacted with caustic solution. Environ. Earth Sci. 2010, 60, 1189–1199. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Jamhiri, B.; Memon, S.A. On the Recent Trends in Expansive Soil Stabilization Using Calcium-Based Stabilizer Materials (CSMs): A Comprehensive Review. Adv. Mater. Sci. Eng. 2020, 2020, 1510969. [Google Scholar] [CrossRef] [Green Version]
- Moghal, A.A.B. State-of-the-Art Review on the Role of Fly Ashes in Geotechnical and Geoenvironmental Applications. J. Mater. Civ. Eng. 2017, 29, 04017072. [Google Scholar] [CrossRef]
- Ashfaq, M.; Moghal, A.A.B.; Basha, B.M. Reliability-Based Design Optimization of Chemically Stabilized Coal Gangue. J. Test. Eval. 2021, 51. [Google Scholar] [CrossRef]
- Indiramma, P.; Sudharani, C.; Needhidasan, S. Utilization of fly ash and lime to stabilize the expansive soil and to sustain pollution free environment—An experimental study. Mater. Today Proc. 2020, 22, 694–700. [Google Scholar] [CrossRef]
- Rakhimova, N.; Rakhimov, R.Z. Toward clean cement technologies: A review on alkali-activated fly-ash cements incorporated with supplementary materials. J. Non-Cryst. Solids 2019, 509, 31–41. [Google Scholar] [CrossRef]
- Firat, S.; Khatib, J.; Yilmaz, G.; Comert, A.T. Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials. Waste Manag. Res. J. A Sustain. Circ. Econ. 2017, 35, 747–756. [Google Scholar] [CrossRef]
- DiGioia, A.M.; Nuzzo, W.L. Fly ash as structural fill. J. Power Div. 1972, 98, 77–92. [Google Scholar] [CrossRef]
- Gray, D.H.; Lin, Y.-K. Engineering properties of compacted fly ash. J. Soil Mech. Found. Div. 1972, 98, 361–380. [Google Scholar] [CrossRef]
- Leonards, G.A.; Bailey, B. Pulverized coal ash as structural fill. J. Geotech. Eng. Div. 1982, 108, 517–531. [Google Scholar] [CrossRef]
- Singh, M.; Garg, M. Cementitious binder from fly ash and other industrial wastes. Cem. Concr. Res. 1999, 29, 309–314. [Google Scholar] [CrossRef]
- Antiohos, S.; Tsimas, S. Activation of fly ash cementitious systems in the presence of quicklime: Part I. Compressive strength and pozzolanic reaction rate. Cem. Concr. Res. 2004, 34, 769–779. [Google Scholar] [CrossRef]
- Singh, S.; Panda, A. Utilization of fly ash in geotechnical construction. Proc. Indian Geotech. Conf. 1996, 1, 547–550. [Google Scholar]
- Ashfaq, M.; Heeralal, M.; Reddy, P.H.P. A Study on Strength Behavior of Alkali-Contaminated Soils Treated with Fly Ash. In Recycled Waste Materials; Springer: Berlin/Heidelberg, Germany, 2019; pp. 137–143. [Google Scholar]
- Bhatti, U.N.; Bashmal, S.; Khan, S.; Ali, S. Design and Optimization of 6-DOF Platform Top Plate under Realistic Joint Conditions. Int. J. Simul. Model. 2020, 19, 53–64. [Google Scholar] [CrossRef]
- Bhatti, U.N.; Khan, S.; Ali, S.; Horoub, M.M. A Numerical Modeling Study of the Effects of Various Joint Boundary Conditions on Stiffness Behavior of 6DOF Platform’s Top Plate. In Proceedings of the 2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE), Budapest, Hungary, 10–13 July 2018; pp. 243–248. [Google Scholar]
- Ali, S.; Kamran, M.A.; Khan, S. Effect of baffle size and orientation on lateral sloshing of partially filled containers: A numerical study. Eur. J. Comput. Mech. 2017, 26, 584–608. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Jalal, F.E.; Onyia, M.E.; Onuoha, I.C.; Alaneme, G.U. Application of Gene Expression Programming to Evaluate Strength Characteristics of Hydrated-Lime-Activated Rice Husk Ash-Treated Expansive Soil. Appl. Comput. Intell. Soft Comput. 2021, 2021, 6686347. [Google Scholar] [CrossRef]
- Al-Busultan, S.; Aswed, G.K.; Almuhanna, R.R.A.; Rasheed, S.E. Application of Artificial Neural Networks in Predicting Subbase CBR Values Using Soil Indices Data. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 16–17 September 2020; IOP Publishing: Bristol, UK, 2020; Volume 671, p. 012106. [Google Scholar]
- Sinha, S.K.; Wang, M.C. Artificial Neural Network Prediction Models for Soil Compaction and Permeability. Geotech. Geol. Eng. 2007, 26, 47–64. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Hameed, Z.; Ali, I.; Taqvi, S.A.; Naqvi, M.; Niazi, M.B.; Noor, T.; Farooq, W. Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel 2018, 233, 529–538. [Google Scholar] [CrossRef]
- Bong, J.T.; Loy, A.C.M.; Chin, B.L.F.; Lam, M.K.; Tang, D.K.H.; Lim, H.Y.; Chai, Y.H.; Yusup, S. Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst. Energy 2020, 207, 118289. [Google Scholar] [CrossRef]
- Koza, J. On the programming of computers by means of natural selection. Genet. Program. 1992. [Google Scholar]
- Ferreira, C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; Volume 21. [Google Scholar]
- Iqbal, M.; Zhang, D.; Jalal, F.E.; Javed, M.F. Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment. Ocean Eng. 2021, 232, 109134. [Google Scholar] [CrossRef]
- Khan, S.; Horoub, M.M.; Shafiq, S.; Ali, S.; Bhatti, U.N. Optimization of vehicle suspension system using genetic algorithm. In Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering (ICMAE), Brussels, Belgium, 22–25 July 2019; pp. 203–207. [Google Scholar]
- Iqbal, M.; Zhao, Q.; Zhang, D.; Jalal, F.E.; Jamal, A. Evaluation of tensile strength degradation of GFRP rebars in harsh alkaline conditions using non-linear genetic-based models. Mater. Struct. 2021, 54, 1–20. [Google Scholar] [CrossRef]
- Jalal, F.E.; Xu, Y.; Iqbal, M.; Javed, M.F.; Jamhiri, B. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP. J. Environ. Manag. 2021, 289, 112420. [Google Scholar] [CrossRef] [PubMed]
- Jalal, F.E.; Xu, Y.; Iqbal, M.; Jamhiri, B.; Javed, M.F. Predicting the compaction characteristics of expansive soils using two genetic programming-based algorithms. Transp. Geotech. 2021, 30, 100608. [Google Scholar] [CrossRef]
- Wang, H.-L.; Yin, Z.-Y. High performance prediction of soil compaction parameters using multi expression programming. Eng. Geol. 2020, 276, 105758. [Google Scholar] [CrossRef]
- Çanakcı, H.; Baykasoğlu, A.; Güllü, H. Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Comput. Appl. 2009, 18, 1031. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Aminian, P.; Gandomi, A.H.; Alavi, A.H.; Bolandi, H. A new predictive model for compressive strength of HPC using gene expression programming. Adv. Eng. Softw. 2012, 45, 105–114. [Google Scholar] [CrossRef]
- Johari, A.; Habibagahi, G.; Ghahramani, A. Prediction of SWCC using artificial intelligent systems: A comparative study. Sci. Iran. 2011, 18, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Alavi, A.H.; Gandomi, A.H.; Sahab, M.G.; Gandomi, M. Multi expression programming: A new approach to formulation of soil classification. Eng. Comput. 2009, 26, 111–118. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Cevik, A. Genetic programming-based attenuation relationship: An application of recent earthquakes in turkey. Comput. Geosci. 2009, 35, 1884–1896. [Google Scholar] [CrossRef]
- Oltean, M.; Grosan, C. A comparison of several linear genetic programming techniques. Complex Syst. 2003, 14, 285–314. [Google Scholar]
- Oltean, M.; Dumitrescu, D. Multi expression programming. J. Genet. Program. Evolvable Mach. Kluwer Second. Tour Rev. 2002. [Google Scholar] [CrossRef]
- Gandomi, A.; Faramarzifar, A.; Rezaee, P.G.; Asghari, A.; Talatahari, S. New design equations for elastic modulus of concrete using multi expression programming. J. Civ. Eng. Manag. 2015, 21, 761–774. [Google Scholar] [CrossRef] [Green Version]
- Fallahpour, A.; Olugu, E.U.; Musa, S.N. A hybrid model for supplier selection: Integration of AHP and multi expression programming (MEP). Neural Comput. Appl. 2015, 28, 499–504. [Google Scholar] [CrossRef]
- Fallahpour, A.; Wong, K.Y.; Rajoo, S.; Tian, G. An evolutionary-based predictive soft computing model for the prediction of electricity consumption using multi expression programming. J. Clean. Prod. 2020, 283, 125287. [Google Scholar] [CrossRef]
- Biswas, R.; Bardhan, A.; Samui, P.; Rai, B.; Nayak, S.; Armaghani, D.J. Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete. Comput. Concr. 2021, 28, 221–232. [Google Scholar]
- Biswas, R.; Rai, B. Effect of cementing efficiency factor on the mechanical properties of concrete incorporating silica fume. J. Struct. Integr. Maint. 2020, 5, 190–203. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Javed, M.F.; Rauf, M.; Azim, I.; Ashraf, M.; Yang, J.; Liu, Q.-F. Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming. Sci. Total Environ. 2021, 780, 146524. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Zafar, A.; Akbar, A.; Javed, M.; Mosavi, A. Application of Gene Expression Programming (GEP) for the Prediction of Compressive Strength of Geopolymer Concrete. Materials 2021, 14, 1106. [Google Scholar] [CrossRef]
- Azim, I.; Yang, J.; Iqbal, M.F.; Javed, M.F.; Nazar, S.; Wang, F.; Liu, Q.-F. Semi-analytical model for compressive arch action capacity of RC frame structures. Structures 2020, 27, 1231–1245. [Google Scholar] [CrossRef]
- Faradonbeh, R.S.; Hasanipanah, M.; Amnieh, H.B.; Armaghani, D.J.; Monjezi, M. Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environ. Monit. Assess. 2018, 190, 351. [Google Scholar] [CrossRef] [PubMed]
- Emamgolizadeh, S.; Bateni, S.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H. Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS). J. Hydrol. 2015, 529, 1590–1600. [Google Scholar] [CrossRef]
- Nazari, A.; Torgal, F.P. Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP. Expert Syst. Appl. 2013, 40, 5427–5438. [Google Scholar] [CrossRef] [Green Version]
- Babanajad, S.K.; Gandomi, A.H.; Alavi, A.H. New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach. Adv. Eng. Softw. 2017, 110, 55–68. [Google Scholar] [CrossRef]
- Alavi, A.H.; Gandomi, A.H.; Nejad, H.C.; Mollahasani, A.; Rashed, A. Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems. Neural Comput. Appl. 2013, 23, 1771–1786. [Google Scholar] [CrossRef]
- Gandomi, A.; Alavi, A.H.; MirzaHosseini, M.R.; Nejad, F.M. Nonlinear Genetic-Based Models for Prediction of Flow Number of Asphalt Mixtures. J. Mater. Civ. Eng. 2011, 23, 248–263. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Liu, Q.-F.; Azim, I.; Zhu, X.; Yang, J.; Javed, M.F.; Rauf, M. Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. J. Hazard. Mater. 2020, 384, 121322. [Google Scholar] [CrossRef]
- Bardhan, A.; Gokceoglu, C.; Burman, A.; Samui, P.; Asteris, P.G. Efficient computational techniques for predicting the California bearing ratio of soil in soaked conditions. Eng. Geol. 2021, 291, 106239. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Bardhan, A.; Kardani, N.; Samui, P.; Hu, J.W.; Ramzy, A. Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power. Renew. Sustain. Energy Rev. 2021, 148, 111315. [Google Scholar] [CrossRef]
- Azim, I.; Yang, J.; Javed, M.F.; Iqbal, M.F.; Mahmood, Z.; Wang, F.; Liu, Q.-F. Prediction model for compressive arch action capacity of RC frame structures under column removal scenario using gene expression programming. Structures 2020, 25, 212–228. [Google Scholar] [CrossRef]
- Azim, I.; Yang, J.; Iqbal, M.F.; Mahmood, Z.; Javed, M.F.; Wang, F.; Liu, Q.-F. Prediction of Catenary Action Capacity of RC Beam-Column Substructures under a Missing Column Scenario Using Evolutionary Algorithm. KSCE J. Civ. Eng. 2021, 25, 891–905. [Google Scholar] [CrossRef]
- Liu, Q.-F.; Iqbal, M.F.; Yang, J.; Lu, X.-Y.; Zhang, P.; Rauf, M. Prediction of chloride diffusivity in concrete using artificial neural network: Modelling and performance evaluation. Constr. Build. Mater. 2020, 268, 121082. [Google Scholar] [CrossRef]
- Hanandeh, S.; Ardah, A.; Abu-Farsakh, M. Using artificial neural network and genetics algorithm to estimate the resilient modulus for stabilized subgrade and propose new empirical formula. Transp. Geotech. 2020, 24, 100358. [Google Scholar] [CrossRef]
- Zha, F.; Pan, D.; Xu, L.; Kang, B.; Yang, C.; Chu, C. Investigations on Engineering Properties of Solidified/Stabilized Pb-Contaminated Soil Based on Alkaline Residue. Adv. Civ. Eng. 2018, 2018, 8595419. [Google Scholar] [CrossRef]
- Fasihnikoutalab, M.H.; Asadi, A.; Unluer, C.; Huat, B.K.; Ball, R.J.; Pourakbar, S. Utilization of Alkali-Activated Olivine in Soil Stabilization and the Effect of Carbonation on Unconfined Compressive Strength and Microstructure. J. Mater. Civ. Eng. 2017, 29, 06017002. [Google Scholar] [CrossRef]
Property | Kaolin Soil | BC Soil |
---|---|---|
Specific gravity | 2.56 | 2.65 |
pH | 7.3 | 7.1 |
USCS classification | CH | CH |
Liquid limit (%) | 41 | 62 |
Plasticity index (%) | 19 | 28 |
Optimum moisture content (%) | 17 | 23 |
Maximum dry density (g/cc) | 1.81 | 1.67 |
Chemical Constituents | Value (%) |
---|---|
Silica (SiO2) | 62.9 |
Alumina (Al2O3) | 21.7 |
Ferric oxide (Fe2O3) | 4.5 |
Calcium oxide (CaO) | 6.8 |
Magnesia (MgO) | 1.08 |
Titanium (TiO2) | 0.06 |
Potash (K2O) | 0.04 |
Sulfur (SO3) | 0.7 |
Loss on ignition | 2.21 |
S. No. | Fly Ash Dosage (%) | Alkali Concentration (N) | Curing Age (Days) | UCSBC (kPa) | UCSkaolin (kPa) |
---|---|---|---|---|---|
1 | 0 | 0 | 1 | 280 | 255 |
2 | 0 | 0 | 1 | 271 | 261 |
3 | 0 | 0 | 1 | 269 | 259 |
4 | 0 | 0 | 1 | 286 | 275 |
5 | 0 | 0 | 1 | 278 | 268 |
6 | 0 | 0 | 1 | 288 | 277 |
7 | 0 | 0 | 7 | 272 | 262 |
8 | 0 | 0 | 7 | 274 | 264 |
9 | 0 | 0 | 7 | 281 | 270 |
10 | 0 | 0 | 7 | 286 | 275 |
11 | 0 | 0 | 7 | 289 | 278 |
12 | 0 | 0 | 7 | 280 | 269 |
13 | 0 | 0 | 14 | 300 | 265 |
14 | 0 | 0 | 14 | 280 | 262 |
15 | 0 | 0 | 14 | 298 | 279 |
16 | 0 | 0 | 14 | 285 | 266 |
17 | 0 | 0 | 14 | 301 | 281 |
18 | 0 | 0 | 14 | 296 | 277 |
19 | 0 | 0 | 28 | 310 | 270 |
20 | 0 | 0 | 28 | 286 | 267 |
21 | 0 | 0 | 28 | 296 | 277 |
22 | 0 | 0 | 28 | 308 | 288 |
23 | 0 | 0 | 28 | 301 | 281 |
24 | 0 | 0 | 28 | 296 | 276 |
25 | 0 | 1 | 1 | 267 | 236 |
26 | 0 | 1 | 1 | 260 | 231 |
⁝ | ⁝ | ⁝ | ⁝ | ⁝ | ⁝ |
378 | 20 | 4 | 14 | 631 | 851 |
379 | 20 | 4 | 28 | 729 | 998 |
380 | 20 | 4 | 28 | 732 | 987 |
381 | 20 | 4 | 28 | 750 | 996 |
382 | 20 | 4 | 28 | 745 | 1040 |
383 | 20 | 4 | 28 | 732 | 1012 |
384 | 20 | 4 | 28 | 740 | 1004 |
Fly Ash Dosage (%) | Alkali Concentration (N) | Curing Age (Days) | UCSBC (kPa) | UCSkaolin (kPa) | |
---|---|---|---|---|---|
Minimum | 0 | 0 | 1 | 44 | 119 |
Maximum | 20 | 4 | 28 | 750 | 1040 |
Mean | 11.25 | 1.75 | 12.5 | 379.51 | 369.06 |
Median | 12.5 | 1.5 | 10.5 | 365 | 325.5 |
SD | 7.40 | 1.48 | 10.06 | 109.14 | 183.30 |
Kurtosis | −1.1537 | −1.1537 | −1.1427 | 1.1374 | 2.2691 |
Skewness | −0.4364 | 0.4364 | 0.5025 | 0.8667 | 1.4534 |
Fly Ash Dosage (%) | Alkali Concentration (N) | Curing (Days) | UCSkaolin,BC (kPa) | |
---|---|---|---|---|
Fly ash dosage (%) | 1 | |||
Alkali concentration (N) | 0 | 1 | ||
Curing age (days) | 0 | 0 | 1 | |
UCSkaolin (kPa) | 0.589906 | 0.508303 | 0.185189 | 1 |
UCSBC (kPa) | 0.724809 | 0.270496 | 0.321986 | 1 |
Parameters | Kaolin Soil | BC Soil |
---|---|---|
Number of subpopulations | 20 | 100 |
Subpopulation size | 1000 | 2000 |
Code length | 100 | 80 |
Crossover probability | 0.9 | 0.9 |
Crossover type | Uniform | |
Mutation probability | 0.001 | |
Tournament size | 2 | |
Operators | 0.5 | |
Variables | 0.5 | |
Constants | 0 | |
Number of generations | 150 | |
Function set | +, −, ×, / | |
Terminal set | Problem input | |
Replication number | 10 | |
Error measure | Mean squared error | |
Problem type | Regression | |
Simplified | Yes | |
Random seed | 0 | |
Number of runs | 10 | |
Number of threads | 1 |
MEP Trial | No. of Subpopulation | Subpopulation Size | Code Length | No. of Generations | Tournament Size | R2 | R | Avg. MSE | Time (min) |
---|---|---|---|---|---|---|---|---|---|
Kaolin Soil | |||||||||
1 | 10 | 100 | 20 | 100 | 2 | 68.54 | 82.79 | 8148 | 1 |
2 | 20 | 69.28 | 83.23 | 7489 | 1 | ||||
3 | 70 | 66.27 | 81.41 | 7177 | 2 | ||||
4 | 100 | 66.27 | 81.41 | 4436 | 3 | ||||
5 | 200 | 64.57 | 80.36 | 5209 | 6 | ||||
6 | 100 | 500 | 77.20 | 87.86 | 2937 | 25 | |||
7 | 1000 | 79.09 | 88.93 | 2521 | 48 | ||||
8 | 1500 | 78.89 | 88.82 | 2562 | 72 | ||||
9 | 2000 | 80.34 | 89.63 | 2485 | 85 | ||||
10 | 30 | 82.60 | 90.88 | 2109 | 130 | ||||
11 | 50 | 83.66 | 91.47 | 1951 | 220 | ||||
12 | 80 | 87.19 | 93.38 | 1527 | 300 | ||||
13 | 100 | 87.65 | 93.62 | 1474 | 429 | ||||
14 | 150 | 88.98 | 94.33 | 1455 | 667 | ||||
15 | 200 | 88.00 | 93.81 | 1315 | 925 | ||||
16 | 20 | 1000 | 150 | 87.19 | 93.37 | 1551 | 40 | ||
17 | 4 | 89.33 | 94.51 | 1895 | 106 | ||||
18 | 6 | 89.58 | 94.65 | 1245 | 102 | ||||
BC Soil | |||||||||
1 | 10 | 100 | 20 | 100 | 2 | 72.45 | 85.12 | 14,697 | 1 |
2 | 20 | 2 | 78.02 | 88.33 | 10,980 | 1 | |||
3 | 70 | 2 | 77.81 | 88.21 | 11,187 | 2 | |||
4 | 100 | 2 | 77.56 | 88.07 | 9578 | 3 | |||
5 | 200 | 2 | 76.39 | 87.40 | 9804 | 8 | |||
6 | 100 | 500 | 2 | 79.19 | 88.99 | 8733 | 23 | ||
7 | 1000 | 2 | 80.26 | 89.59 | 8486 | 52 | |||
8 | 1500 | 2 | 81.13 | 90.07 | 8105 | 100 | |||
9 | 2000 | 2 | 80.88 | 89.93 | 8026 | 145 | |||
10 | 30 | 2 | 79.26 | 89.03 | 7993 | 190 | |||
11 | 50 | 2 | 78.80 | 88.77 | 7256 | 330 | |||
12 | 80 | 2 | 80.55 | 89.75 | 6592 | 357 | |||
13 | 100 | 2 | 80.00 | 89.44 | 7633 | 393 | |||
14 | 80 | 150 | 2 | 93.54 | 96.72 | 2220 | 552 | ||
15 | 200 | 2 | 92.19 | 96.02 | 2638 | 549 | |||
16 | 70 | 500 | 100 | 100 | 2 | 70.11 | 83.73 | 8450 | 90 |
17 | 4 | 87.66 | 93.63 | 5976 | 110 | ||||
18 | 6 | 90.97 | 95.38 | 4400 | 112 |
Dataset | Performance Index | Kaolin Soil | BC Soil |
---|---|---|---|
Training | R | 0.93713 | 0.95661 |
RMSE | 18.271 | 17.151 | |
MAE | 19.6 | 30.0 | |
RSE | 0.1280 | 0.1078 | |
RRMSE | 0.0543 | 0.0564 | |
NSE | 0.8720 | 0.8922 | |
ρ | 0.0280 | 0.02882 | |
Testing | R | 0.90014 | 0.96243 |
RMSE | 21.987 | 22.995 | |
MAE | 30.5 | 54.7 | |
RSE | 0.1972 | 0.0841 | |
RRMSE | 0.0458 | 0.0441 | |
NSE | 0.8028 | 0.9159 | |
ρ | 0.0241 | 0.0225 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, K.; Ashfaq, M.; Iqbal, M.; Khan, M.A.; Amin, M.N.; Shalabi, F.I.; Faraz, M.I.; Jalal, F.E. Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils. Materials 2022, 15, 4025. https://doi.org/10.3390/ma15114025
Khan K, Ashfaq M, Iqbal M, Khan MA, Amin MN, Shalabi FI, Faraz MI, Jalal FE. Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils. Materials. 2022; 15(11):4025. https://doi.org/10.3390/ma15114025
Chicago/Turabian StyleKhan, Kaffayatullah, Mohammed Ashfaq, Mudassir Iqbal, Mohsin Ali Khan, Muhammad Nasir Amin, Faisal I. Shalabi, Muhammad Iftikhar Faraz, and Fazal E. Jalal. 2022. "Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils" Materials 15, no. 11: 4025. https://doi.org/10.3390/ma15114025
APA StyleKhan, K., Ashfaq, M., Iqbal, M., Khan, M. A., Amin, M. N., Shalabi, F. I., Faraz, M. I., & Jalal, F. E. (2022). Multi Expression Programming Model for Strength Prediction of Fly-Ash-Treated Alkali-Contaminated Soils. Materials, 15(11), 4025. https://doi.org/10.3390/ma15114025