Innovative Calcium Carbonate-Based Products to Repair Cracked Cement Mortars
Abstract
:1. Introduction
2. Materials and Methods
- Ca(OAcAc)2 dissolved in water (CFW);
- Ca(OTHF)2 dissolved in ethanol (ALK1);
- Ca(OTHF)2 dissolved in 2-butanol (ALK2).
3. Results and Discussion
3.1. Retained Dry Matter of Consolidants
3.2. Visual Appearance
3.3. Colorimetry
3.4. Water Absorption
3.5. UPV Measurements and Consolidation Effect
3.6. Surface Hardness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Rooij, M.; Van Tittelboom, K.; De Belie, N.; Schlangen, E. (Eds.) Self-Healing Phenomena in Cement-Based Materials-State-of-the-Art Report of RILEM Technical Committee 221-SHC; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9789400766235. [Google Scholar]
- Croft, C. Concrete Architecture; Gibbs Smith Publisher: Layton, UT, USA, 2004. [Google Scholar]
- Collins, P. Concrete: The Vision of a New Architecture, 2nd ed.; McGill- Queen’s University Press: Montreal, QC, Canada, 2004. [Google Scholar]
- Philip, J. Contemporary Concrete Buildings; Thasen: Cologne, Germany, 2018. [Google Scholar]
- Hobbs, D.W. Concrete deterioration: Causes, diagnosis, and minimising risk. Int. Mater. Rev. 2001, 46, 117–144. [Google Scholar] [CrossRef]
- Bonić, Z.; Ćurčić, G.T.; Davidović, N.; Savić, J. Damage of concrete and reinforcement of reinforced-concrete foundations caused by environmental effects. Procedia Eng. 2015, 117, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, Y.X. Numerical modelling of mechanical deterioration of cement mortar under external sulfate attack. Constr. Build. Mater. 2018, 158, 490–502. [Google Scholar] [CrossRef]
- Liu, C.; Gao, J.; Chen, F.; Zhao, Y.; Chen, X.; He, Z. Coupled effect of relative humidity and temperature on the degradation of cement mortars partially exposed to sulfate attack. Constr. Build. Mater. 2019, 216, 93–100. [Google Scholar] [CrossRef]
- Wang, Y.; Ueda, T.; Gong, F.; Zhang, D. Meso-scale mechanical deterioration of mortar due to sodium chloride attack. Cem. Concr. Compos. 2019, 96, 163–173. [Google Scholar] [CrossRef]
- Glasser, F.P.; Marchand, J.; Samson, E. Durability of concrete-Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 2008, 38, 226–246. [Google Scholar] [CrossRef]
- The Circularity Gap Report 2021. Circle Economy; 2021. Available online: https://assets.website-files.com/5d26d80e8836af2d12ed1269/60210bc3227314e1d952c6da_20210122%20-%20CGR%20Global%202021%20-%20Report%20-%20210x297mm.pdf (accessed on 3 June 2022).
- Environment, U.N.; Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar]
- Gallagher, L.; Peduzzi, P. Sand and Sustainability: Finding New Solutions for Environmental Governance of Global Sand Resources; UNEP: Geneva, Switzerland, 2019. [Google Scholar]
- Available online: http://www.gowenconstruction.ie/wp-content/uploads/2011/04/A-Guide-to-Concrete-Repair-European-Standards.pdf (accessed on 3 June 2022).
- Franzoni, E.; Pigino, B.; Pistolesi, C. Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cem. Concr. Compos. 2013, 44, 69–76. [Google Scholar] [CrossRef]
- Sánchez, M.; Faria, P.; Ferrara, L.; Horszczaruk, E.; Jonkers, H.M.; Kwiecień, A.; Mosa, J.; Peled, A.; Pereira, A.S.; Snoeck, D.; et al. External treatments for the preventive repair of existing constructions: COST Action CA15202 framework. Constr. Build. Mater. 2018, 193, 435–452. [Google Scholar] [CrossRef] [Green Version]
- Coppola, L. IL Restauro Dell’architettura Moderna in Cemento Armato; HOEPLI EDITORE: Milano, Italy, 2015. [Google Scholar]
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Szeląg, M. Evaluation of cracking patterns of cement paste containing polypropylene fibers. Compos. Struct. 2019, 220, 402–411. [Google Scholar] [CrossRef]
- Suleiman, A.R.; Nelson, A.J.; Nehdi, M.L. Visualization and quantification of crack self-healing in cement-based materials incorporating different minerals. Cem. Concr. Compos. 2019, 103, 49–58. [Google Scholar] [CrossRef]
- ICOMOS Approaches to the Conservation of Twentieth-Century Cultural Heritage Madrid–New Delhi Document 2017. Available online: http://www.icomos-isc20c.org/pdf/madrid-new-delhi-document-2017.pdf (accessed on 3 June 2022).
- Heinemann, H.; Zijlstra, H.; van Hees, R.; Nijland, T. From concrete repair to concrete conservation: How to preserve the heritage values of historic concrete. In Concrete Solutions; Grantham, M., Mechtcherine, V., Schneck, U., Eds.; CRC Press, Taylor and Francis Group: London, UK, 2011. [Google Scholar]
- Ban, M. Aspects of conserving exposed concrete architecture with wotruba church as an example. In Proceedings of the RILEM International Workshop on Performance-Based Specification and Control of Concrete Durability, Zagreb, Croatia, 11–13 June 2014. [Google Scholar]
- Pizzigatti, C.; Franzoni, E. The problem of conservation of XX century architectural heritage: The fibreglass dome of the woodpecker dance club in Milano Marittima (Italy). J. Build. Eng. 2021, 42, 102476. [Google Scholar] [CrossRef]
- Zafeiropoulou, T.; Rakanta, E.; Batis, G. Performance evaluation of organic coatings against corrosion in reinforced cement mortars. Prog. Org. Coatings 2011, 72, 175–180. [Google Scholar] [CrossRef]
- Pigino, B.; Leemann, A.; Franzoni, E.; Lura, P. Ethyl silicate for surface treatment of concrete-Part II: Characteristics and performance. Cem. Concr. Compos. 2012, 34, 313–321. [Google Scholar] [CrossRef]
- Pan, X.; Shi, Z.; Shi, C.; Ling, T.C.; Li, N. A review on surface treatment for concrete–Part 2: Performance. Constr. Build. Mater. 2017, 133, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Tan, H.; Shen, W.; Xu, G.; Ma, B.; Ji, X. Nano-silica and silica fume modified cement mortar used as Surface Protection Material to enhance the impermeability. Cem. Concr. Compos. 2018, 92, 7–17. [Google Scholar] [CrossRef]
- Scarfato, P.; Di Maio, L.; Fariello, M.L.; Russo, P.; Incarnato, L. Preparation and evaluation of polymer/clay nanocomposite surface treatments for concrete durability enhancement. Cem. Concr. Compos. 2012, 34, 297–305. [Google Scholar] [CrossRef]
- Suleiman, A.R.; Nehdi, M.L. Effect of environmental exposure on autogenous self-healing of cracked cement-based materials. Cem. Concr. Res. 2018, 111, 197–208. [Google Scholar] [CrossRef]
- Ding, Z.; Fang, Y.; Su, J.F.; Hong, S.; Dong, B. In situ precipitation for the surface treatment and repair of cement-based materials. J. Adhes. Sci. Technol. 2020, 34, 1233–1240. [Google Scholar] [CrossRef]
- Skrelp, L.; Pondelak, A.; Skapin, A.S. Method for Reinforcing Porous Construction Materials and Use Calcium Acetoacetate Solution to this Aim: EP 3004028 (B1) 2017. Available online: https://patents.google.com/patent/EP3004028B1/en (accessed on 3 June 2022).
- Favaro, M.; Chiurato, M.; Tomasin, P.; Ossola, F.; Bernardi, A. Metodo per la Preparazione di Sospensioni di Particelle di Alcossidi di Metalli Alcalino- Terrosi. 2017. Available online: https://brevetti.cnr.it/download/PDF/datasheet10321.pdf. (accessed on 3 June 2022).
- Pondelak, A.; Kramar, S.; Kikelj, M.L.; Skapin, A.S. In-situ study of the consolidation of wall paintings using commercial and newly developed consolidants. J. Cult. Herit. 2017, 28, 1–8. [Google Scholar] [CrossRef]
- Bourguignon, E.; Tomasin, P.; Detalle, V.; Vallet, J.; Labouré, M.; Olteanu, I.; Chiurato, M.A.; Bernardi, A.; Becherini, F. Calcium alkoxides as alternative consolidants for wall paintings: Evaluation of their performance in laboratory and on site, on model and original samples, in comparison to conventional products. J. Cult. Herit. 2018, 29, 54–66. [Google Scholar] [CrossRef]
- Ropret, P.; Legan, L.; Retko, K.; Špec, T.; Pondelak, A.; Škrlep, L.; Sever Škapin, A. Evaluation of vibrational spectroscopic techniques for consolidants’ penetration depth determination. J. Cult. Herit. 2017, 23, 148–156. [Google Scholar] [CrossRef]
- Natali, I.; Tomasin, P.; Becherini, F.; Bernardi, A.; Ciantelli, C.; Favaro, M.; Favoni, O.; Pérez, V.J.F.; Olteanu, I.D.; Dolores, M.; et al. Innovative consolidating products for stone materials: Field exposure tests as a valid approach for assessing durability. Herit. Sci. 2015, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- UNI-EN 196-1; Metodi di prova dei cementi-Parte 1: Determinazione delle resistenze meccaniche. European Standard: Rome, Italy, 2016.
- UNI EN 197-1; Composizione, specificazioni e criteri di conformità per cementi comuni. European Standard: Rome, Italy, 2011.
- Available online: https://cembureau.eu/media/iffd23bq/cembureau_cementslowcarboneurope.pdf (accessed on 3 June 2022).
- Favier, A.; De Wolf, C.; Scrivener, K.; Habert, G. A Sustainable Future for the European Cement and Concrete Industry Technology Assessment for Full Decarbonisation of the Industry by 2050; ETH Zurich: Zürich, Switzerland, 2018; pp. 12–19. [Google Scholar]
- Van Mier, J.G.M. Fracture Processes of Concrete; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Dai, J.G.; Akira, Y.; Wittmann, F.H.; Yokota, H.; Zhang, P. Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks. Cem. Concr. Compos. 2010, 32, 101–109. [Google Scholar] [CrossRef]
- Russo, N.; Gastaldi, M.; Marras, P.; Schiavi, L.; Strini, A.; Lollini, F. Effects of load-induced micro-cracks on chloride penetration resistance in different types of concrete. Mater. Struct. Constr. 2020, 53, 143. [Google Scholar] [CrossRef]
- NORMAL 43/93; Misure colorimetriche di superfici opache. UNI EN: Rome, Italy, 1993.
- UNI EN 10859:2000; beni culturali. Materiali lapidei naturali ed artificiali. Determinazione dell’assorbimento d’acqua per capillarità. UNI EN: Rome, Italy, 2000.
- Panzera, T.H.; Christoforo, A.L.; de Paiva Cota, F.; Ribeiro Borges, P.H.; Bowen, C.R. Ultrasonic pulse velocity evaluation of cementitious materials. In Advances in Composite Materials: Analysis of Natural and Man-Made Materials; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Ahn, E.; Kim, H.; Sim, S.H.; Shin, S.W.; Shin, M. Principles and applications of ultrasonic-based nondestructive methods for self-healing in cementitious materials. Materials 2017, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Karaiskos, G.; Deraemaeker, A.; Aggelis, D.; Van Hemelrijck, D.M. Monitoring of concrete structures using the ultrasonic pulse velocity method. Smart Mater. Struct. 2015, 24, 113001. [Google Scholar] [CrossRef] [Green Version]
- Viles, H.; Goudie, A.; Grab, S.; Lalley, J. The use of the Schmidt Hammer and Equotip for rock hardness assessment in geomorphology and heritage science: A comparative analysis. Earth Surf. Process. Landforms 2011, 36, 320–333. [Google Scholar] [CrossRef]
- Tomasin, P.; Mondin, G.; Zuena, M.; El Habra, N.; Nodari, L.; Moretto, L.M. Calcium alkoxides for stone consolidation: Investigating the carbonation process. Powder Technol. 2019, 344, 260–269. [Google Scholar] [CrossRef]
- Pondelak, A.; Rosi, F.; Maurich, C.; Miliani, C.; Škapin, S.D.; Sever Škapin, A. The role of relative humidity on crystallization of calcium carbonate from calcium acetoacetate precursor. Appl. Surf. Sci. 2020, 506, 144768. [Google Scholar] [CrossRef]
- Roig-Flores, M.; Serna, P. Concrete early-age crack closing by autogenous healing. Sustainability 2020, 12, 4476. [Google Scholar] [CrossRef]
- García, O.; Malaga, K. Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J. Cult. Herit. 2012, 13, 77–82. [Google Scholar] [CrossRef]
- International Charter for the Conservation and Restoration of Monuments and Sites (The Venice Charter)–1964 and Following ICOMOS Charters and Resolutions. 1964. Available online: https://www.icomos.org/charters/venice_e.pdf (accessed on 3 June 2022).
- Delgado Rodrigues, J.; Grossi, A. Indicators and ratings for the compatibility assessment of conservation actions. J. Cult. Herit. 2007, 8, 32–43. [Google Scholar] [CrossRef]
Samples 1 | Dry Matter (kg/m2) |
---|---|
CFW_AP1 | 0.57 ± 0.08 |
ALK1_AP1 | 0.54 ± 0.08 |
ALK2_AP1 | 0.54 ± 0.07 |
CFW_AP2 | 1.37 ± 0.15 |
ALK1_AP2 | 0.63 ± 0.07 |
ALK2_AP2 | 0.65 ± 0.07 |
Samples 1 | CWAC | |
---|---|---|
Before Treatment | After Treatment | |
CFW_AP1 | 5.9 ± 0.6 | 5.9 ± 0.1 |
ALK1_AP1 | 4.6 ± 0.3 | 5.2 ± 0.5 |
ALK2_AP1 | 3.8 ± 0.2 | 3.8 ± 0.3 |
CFW_AP2 | 5.1 ± 0.4 | 4.2 ± 0.2 |
ALK1_AP2 | 5.3 ± 0.2 | 5.2 ± 0.3 |
ALK2_AP2 | 4.8 ± 0.1 | 4.9 ± 0.3 |
Samples 1 | UPV (m/s) | % | |
---|---|---|---|
Before Treatment | After Treatment | ||
NC-NT | 4134.0 ± 28.5 | – | |
CFW_AP1 | 4080.4 ± 56.4 | 4257.7 ± 33.1 | +4.3 |
ALK1_AP1 | 4171.2 ± 57.3 | 4243.9 ± 6.3 | +1.7 |
ALK2_AP1 | 4201.7 ± 96.3 | 4274.9 ± 54.4 | +1.7 |
CFW_AP2 | 4172.6 ± 53.1 | 4307.2 ± 48.9 | +3.2 |
ALK1_AP2 | 4120.7 ± 46.6 | 4307.9 ± 21.9 | +4.5 |
ALK2_AP2 | 4085.6 ± 43.8 | 4289.3 ± 41.4 | +5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuena, M.; Pondelak, A.; Garbin, E.; Panizza, M.; Nodari, L.; Škapin, A.S.; Škrlep, L.; Artioli, G.; Tomasin, P. Innovative Calcium Carbonate-Based Products to Repair Cracked Cement Mortars. Materials 2022, 15, 4044. https://doi.org/10.3390/ma15124044
Zuena M, Pondelak A, Garbin E, Panizza M, Nodari L, Škapin AS, Škrlep L, Artioli G, Tomasin P. Innovative Calcium Carbonate-Based Products to Repair Cracked Cement Mortars. Materials. 2022; 15(12):4044. https://doi.org/10.3390/ma15124044
Chicago/Turabian StyleZuena, Martina, Andreja Pondelak, Enrico Garbin, Matteo Panizza, Luca Nodari, Andrijana Sever Škapin, Luka Škrlep, Gilberto Artioli, and Patrizia Tomasin. 2022. "Innovative Calcium Carbonate-Based Products to Repair Cracked Cement Mortars" Materials 15, no. 12: 4044. https://doi.org/10.3390/ma15124044
APA StyleZuena, M., Pondelak, A., Garbin, E., Panizza, M., Nodari, L., Škapin, A. S., Škrlep, L., Artioli, G., & Tomasin, P. (2022). Innovative Calcium Carbonate-Based Products to Repair Cracked Cement Mortars. Materials, 15(12), 4044. https://doi.org/10.3390/ma15124044