Iron Oxide Magnetic Nanoparticles with a Shell Made from Nanosilver—Synthesis Methodology and Characterization of Physicochemical and Biological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Synthesis Methodology for Fe3O4@Ag Nanoparticles
- aqueous solution of Arabic gum (water environment);
- mixture of the aqueous solution of Arabic gum and essential oil in a 1.4:1.0 volume ratio (oil/water (O/W) environment);
- solution of Arabic gum in the essential oil.
2.3. Analysis of the Particle Size via Dynamic Light Scattering (DLS)
2.4. Characterization of the Optical Properties of the Particles via UV-Vis Spectrophotometry
2.5. Analysis of the Chemical Structure of the Particles via FT-IR Spectroscopy
2.6. Evaluation of the Crystallinity of the Particles Obtained via X-ray Diffraction (XRD)
2.7. Analysis of the Surface Morphology Supported by the Identification of the Elemental Composition of the Particles via the SEM-EDS Technique
2.8. The Particle Surface Morphology Analysis Using Transmission Electron Microscopy (TEM)
2.9. Biological Investigations
2.9.1. Evaluation of the Cytotoxicity of the Particles via an MTT Reduction Assay
2.9.2. Studies on the Pro-Inflammatory Activity of the Particles
3. Results and Discussion
3.1. Selection of the Stabilizer Concentration of the Particles’ Suspension Supported by the DLS and UV-Vis Analyses
3.2. Studies on the Impact of the Reaction Environment on the Colloidal Stability of the Fe3O4@Ag Particle Suspension
- mixture of a 3% aqueous solution of Arabic gum and essential oil in a 1.4:1.0 volume ratio (oil/water (O/W) reaction environment);
- a 3% solution of Arabic gum in essential oil (oil (O) reaction environment).
3.3. Characterization of the Chemical Structure of the Particles via FT-IR Spectroscopy
3.4. Characterization of the Particle Crystallinity via the XRD Technique
3.5. Analysis of the Particles’ Surface Morphology Supported by an Elemental Composition Analysis via the SEM-EDS Method
3.6. Analysis of the Particle Morphology via the TEM Technique
3.7. Biological Investigations
3.7.1. Results of the MTT Reduction Assay
3.7.2. Studies on the Pro-Inflammatory Activity of the Particles
4. Conclusions
- The synthesis performed here allowed us to obtain magnetic nanoparticles with a shell made of silver nanoparticles. This shell was confirmed via UV-Vis spectrophotometry, X-ray diffraction (XRD peaks characteristic for the regular face-centered cubic (fcc) structure of silver crystals (ICSS 00-004-0783)), and the elemental composition.
- It was demonstrated that the stabilizer concentration affected the size of the particles and the susceptibility of agglomerates thereof to crushing. Arabic gum in the form of a 3% aqueous solution was an efficient stabilizing agent.
- It was proven that the oil/water reaction medium was conducive to the formation of nanoparticles. In these reaction conditions, the formation of particle agglomerates was strongly limited; after 15 min of sonication, a suspension containing only nanosized particles was obtained.
- Regardless of the reaction environment, the obtained nanomaterials exhibited no cytotoxic properties towards L929 murine fibroblast cells or pro-inflammatory activity against the THP1XBlueTM cell line.
- The possibility of the modification of magnetic nanoparticles makes them promising for application as drug carriers. Additionally, due to their magnetic properties, an active substance can be delivered to a specific site via an external magnetic field.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sudha, P.N.; Sangeetha, K.; Vijayalakshmi, K.; Barhoum, A. Chapter 12—Nanomaterials history, classification, unique properties, production and market. In Emerging Applications of Nanoparticles and Architecture Nanostructures; Barhoum, A., Makhlouf, A.S.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 341–384. [Google Scholar]
- Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Therapeutic efficacy of nanoparticles and routes of administration. Front. Chem. 2018, 6, 360. [Google Scholar] [CrossRef] [PubMed]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Adv. Mat. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Aryal, S.; Park, H.; Leary, J.F.; Key, J. Top-down fabrication-based nano/microparticles for molecular imaging and drug delivery. Int. J. Nanomed. 2019, 14, 6631–6644. [Google Scholar] [CrossRef] [Green Version]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2022, 300, 102–597. [Google Scholar] [CrossRef]
- Singh, J.P.; Kumar, M.; Sharma, A.; Pandey, G.; Chae, K.H.; Lee, S. Bottom-Up and Top-Down Approaches for MgO. In Sonochemical Reactions; Karakuş, S., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da, X.; Li, R.; Li, X.; Lu, Y.; Gu, F.; Liu, Y. Synthesis and characterization of PEG coated hollow Fe3O4 magnetic nanoparticles as a drug carrier. Mater. Lett. 2022, 309, 131357. [Google Scholar] [CrossRef]
- Materón, E.M.; Miyazaki, C.M.; Carr, O.; Joshi, N.; Picciani, P.H.S.; Dalmaschio, C.J.; Davis, F.; Shimizu, F.M. Magnetic nanoparticles in biomedical applications: A review. Appl. Surf. Sci. Adv. 2021, 6, 100163. [Google Scholar] [CrossRef]
- Nomoev, A.V.; Bardakhanov, S.P.; Schreiber, M.; Bazarova, D.G.; Romanov, N.A.; Baldanov, B.B.; Radnaev, B.R.; Syzrantsev, V.V. Structure and mechanism of the formation of core–shell nanoparticles obtained through a one-step gas-phase synthesis by electron beam evaporation. Beilstein. J. Nanotechnol. 2015, 6, 874–880. [Google Scholar] [CrossRef]
- Mandal, S.; Chaudhuri, K. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics. World J. Biol. Chem. 2016, 7, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Chircov, C.; Matei, M.-F.; Neacșu, I.A.; Vasile, B.S.; Oprea, O.-C.; Croitoru, A.-M.; Trușcă, R.-D.; Andronescu, E.; Sorescu, I.; Bărbuceanu, F. Iron Oxide–Silica Core–Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies. Antibiotics 2021, 10, 1138. [Google Scholar] [CrossRef]
- Chen, W.J.; Tsai, P.J.; Chen, Y.C. Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria. Small 2008, 4, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Purushotham, S.; Chang, P.E.J.; Rumpel, H.; Kee, I.H.C.; Ng, R.T.H.; Chow, P.K.H.; Tan, C.K.; Ramanujan, R.V. Thermoresponsive core–shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 2009, 20, 305101. [Google Scholar] [CrossRef]
- Liao, S.; Liu, C.; Bastakoti, B.P.; Suzuki, N.; Chang, Y.; Yamauchi, Y.; Lin, F.L.; Wu, K. Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int. J. Nanomed. 2015, 10, 3315–3328. [Google Scholar]
- Zhang, G.; Liao, Y.; Baker, I. Surface Engineering of Core/Shell Iron/Iron Oxide Nanoparticles from Microemulsions for Hyperthermia. Mater. Sci. Eng. C Mater. Biol. Appl. 2010, 30, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Aisida, S.O.; Madubuonu, N.; Alnasir, M.H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F.I. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci. 2020, 10, 305–315. [Google Scholar] [CrossRef]
- Ezealigo, E.S.; Ezealigo, B.N.; Aisida, S.O.; Ezema, F.O. Iron oxide nanoparticles in biological systems: Antibacterial and toxicology perspective. JCIS Open. 2021, 4, 100027. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, F.; Cole, A.J.; Chertok, B.; David, A.E.; Wang, J.; Yang, V.C. Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging. AAPS J. 2009, 11, 693–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roque, A.C.A.; Bicho, A.; Batalha, I.L.; Cardoso, A.S.; Hussain, A. Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. J. Biotechnol. 2009, 144, 313–320. [Google Scholar] [CrossRef]
- Ma, L.; Zou, L.; McClements, D.J.; Liu, W. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocoll. 2020, 100, 105381. [Google Scholar] [CrossRef]
- Kędzierska, M.; Potemski, P.; Drabczyk, A.; Kudłacik-Kramarczyk, S.; Głąb, M.; Grabowska, B.; Mierzwiński, D.; Tyliszczak, B. The Synthesis Methodology of PEGylated Fe3O4@Ag Nanoparticles Supported by Their Physicochemical Evaluation. Molecules 2021, 26, 1744. [Google Scholar] [CrossRef]
- Drabczyk, A.; Kudłacik-Kramarczyk, S.; Głąb, M.; Kędzierska, M.; Jaromin, A.; Mierzwiński, D.; Tyliszczak, B. Physicochemical investigations of chitosan-based hydrogels containing Aloe vera designed for biomedical use. Materials 2020, 13, 3073. [Google Scholar] [CrossRef]
- Kudłacik-Kramarczyk, S.; Drabczyk, A.; Głąb, M.; Alves-Lima, D.; Lin, H.; Douglas, T.E.L.; Kuciel, S.; Zagórska, A.; Tyliszczak, B. Investigations on the impact of the introduction of the Aloe vera into the hydrogel matrix on cytotoxic and hydrophilic properties of these systems considered as potential wound dressings. Mat. Sci. Eng. C 2021, 123, 111977. [Google Scholar] [CrossRef]
- Maragoni, V.; Dasari, A.; Alle, M.; Amrutham, S.K.; Guttena, V.; Kotu, G.M. A Novel Green Synthesis of Silver Nanoparticles Using Gum Karaya: Characterization, Antimicrobial and Catalytic Activity Studies. J. Cluster Sci. 2014, 25, 409–422. [Google Scholar]
- Hassan, H.M.; Abdelkareem, A.A.; Taha, H.M. Chemistry, Biological, and Pharmacological Properties of Gum Arabic. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K.G., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–18. [Google Scholar]
- Modrogan, C.; Cǎprǎrescu, S.; Dǎncilǎ, A.M.; Orbuleț, O.D.; Grumezescu, A.M.; Purcar, V.; Radițoiu, V.; Fierascu, R.C. Modified Composite Based on Magnetite and Polyvinyl Alcohol: Synthesis, Characterization, and Degradation Studies of the Methyl Orange Dye from Synthetic Wastewater. Polymers 2021, 13, 3911. [Google Scholar] [CrossRef]
- Vinayahan, T.; Williams, P.A.; Phillips, G.O. Electrostatic Interaction and Complex Formation between Gum Arabic and Bovine Serum Albumin. Biomacromolecules 2010, 11, 3367–3374. [Google Scholar] [CrossRef]
- Ibekwe, C.A.; Oyatogun, G.M.; Esan, T.; Oluwasegun, K.M. Synthesis and Characterization of Chitosan/Gum Arabic Nanoparticles for Bone Regeneration. Am. J. Mater. Sci. Eng. 2017, 5, 28–36. [Google Scholar]
- Mir, M.B.; Haripriya, S. Assessment of physical and structural characteristics of almond gum. Int. J. Biol. Macromol. 2016, 93, 476–482. [Google Scholar]
- Pantoja-Castroa, M.A.; González-Rodríguez, H. Study by infrared spectroscopy and thermogravimetric analysis of Tannins and Tannic acid. Rev. Latinoam. Quimica. 2011, 39, 107–112. [Google Scholar]
- Mahmood, S.; Almurisi, S.H.; AL-Japairai, K.; Hilles, A.R.; Alelwani, W.; Bannunah, A.M.; Alshammari, F.; Alheibshy, F. Ibuprofen-Loaded Chitosan–Lipid Nanoconjugate Hydrogel with Gum Arabic: Green Synthesis, Characterisation, In Vitro Kinetics Mechanistic Release Study and PGE2 Production Test. Gels 2021, 7, 254. [Google Scholar] [CrossRef]
- Chockalingam, A.M.; Babu, H.K.R.R.; Chittor, R.; Tiwari, J.P. Gum arabic modified Fe3O4 nanoparticles cross linked with collagen for isolation of bacteria. J. Nanobiotechnol. 2010, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Espinosa-Andrews, H.; Sandoval-Castilla, O.; Vázquez-Torres, H.; Vernon-Carter, E.J.; Lobato-Calleros, C. Determination of the gum Arabic–chitosan interactions by Fourier Transform Infrared Spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydr. Polym. 2010, 79, 541–546. [Google Scholar] [CrossRef]
- Shagholani, H.; Ghoreishi, S.M.; Mousazadeh, M. Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int. J. Biol. Macromol. 2015, 78, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Jemal, K.; Sandeep, B.V.; Sudhakar, P. Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Allophylus serratus Leaf and Leaf Derived Callus Extracts Mediated Silver Nanoparticles. J. Nanomater. 2017, 2017, 4213275. [Google Scholar] [CrossRef] [Green Version]
- PN-EN ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: In Vitro Cytotoxicity Tests. International Organization for Standardization: Geneva, Switzerland, 2009.
Chemical Compound (ICDD) | Space Group | Network Type | Pattern Network Parameter (ICDD), Å | Calculated Network Parameter, Å | Network Deformation, % | Crystallinity Size, nm |
---|---|---|---|---|---|---|
Fe3O4 (00-001-1111) | Fd-3m | cubic | a = 8.374 | a = 8.371 | 0 | 10 |
Ag (00-004-0783) | Fm-3m | cubic | a = 4.0862 | a = 4.0857 | −0.10 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kędzierska, M.; Drabczyk, A.; Jamroży, M.; Kudłacik-Kramarczyk, S.; Głąb, M.; Potemski, P.; Tyliszczak, B. Iron Oxide Magnetic Nanoparticles with a Shell Made from Nanosilver—Synthesis Methodology and Characterization of Physicochemical and Biological Properties. Materials 2022, 15, 4050. https://doi.org/10.3390/ma15124050
Kędzierska M, Drabczyk A, Jamroży M, Kudłacik-Kramarczyk S, Głąb M, Potemski P, Tyliszczak B. Iron Oxide Magnetic Nanoparticles with a Shell Made from Nanosilver—Synthesis Methodology and Characterization of Physicochemical and Biological Properties. Materials. 2022; 15(12):4050. https://doi.org/10.3390/ma15124050
Chicago/Turabian StyleKędzierska, Magdalena, Anna Drabczyk, Mateusz Jamroży, Sonia Kudłacik-Kramarczyk, Magdalena Głąb, Piotr Potemski, and Bożena Tyliszczak. 2022. "Iron Oxide Magnetic Nanoparticles with a Shell Made from Nanosilver—Synthesis Methodology and Characterization of Physicochemical and Biological Properties" Materials 15, no. 12: 4050. https://doi.org/10.3390/ma15124050
APA StyleKędzierska, M., Drabczyk, A., Jamroży, M., Kudłacik-Kramarczyk, S., Głąb, M., Potemski, P., & Tyliszczak, B. (2022). Iron Oxide Magnetic Nanoparticles with a Shell Made from Nanosilver—Synthesis Methodology and Characterization of Physicochemical and Biological Properties. Materials, 15(12), 4050. https://doi.org/10.3390/ma15124050