Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Unfoamed and Foamed Geopolymers
2.3. High Temperature Exposure
2.4. Test and Characterisation Method
3. Results and Discussion
3.1. Effect of PAS Foam-to-Paste Ratio
3.2. High Temperature Performance
3.3. Microstructural Analysis
3.4. Phase Analysis
3.5. Functional Group Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, C.; Colombo, P. Processing, properties and applications of highly porous geopolymers: A review. Ceram. Int. 2018, 44, 16103–16118. [Google Scholar] [CrossRef]
- Mastura, W.I.; Mustafa, M.A.B.A.; Ahmad, R.; Naveed, A.; Ruzaidi, C.M.G.; Ibrahim, M. Effects of thermal resistance to fly ash-based lightweight geopolymer. IOP Conf. Ser. Mater. Sci. Eng. 2019, 551, 012082. [Google Scholar] [CrossRef]
- Reeb, C.; Pierlot, C.; Davy, C.; Lambertin, D. Incorporation of organic liquids into geopolymer materials—A review of processing, properties and applications. Ceram. Int. 2021, 47, 7369–7385. [Google Scholar] [CrossRef]
- Ibrahim, W.M.W.; Ahmad, R.; Coman, B.T.; Abdullah, M.M.A.B.; Puskas, A.; Jaganathan, V.S. The effects of solid to liquid ratio on fly ash based lightweight geopolymer. IOP Conf. Ser. Mater. Sci. Eng. 2020, 877, 012013. [Google Scholar] [CrossRef]
- Ibrahim, W.M.W.; Hussin, K.; Abdullah, M.M.A.B.; Kadir, A.A.; Deraman, L.M.; Sandu, A.V. Influence of foaming agent/water ratio and foam/geopolymer paste ratio to the properties of fly ash-based lightweight geopolymer for brick application. Rev. Chim. 2017, 68, 1978–1982. [Google Scholar] [CrossRef]
- Mastura, W.I.W.; Romisuhani, A.; Abdullah, M.M.A.B.; Faheem, M.T.M.; Ahmad, S.S.; Aida, M.M.N. Correlation between thermal insulation properties with compressive strength and density of lightweight geopolymer. IOP Conf. Ser. Mater. Sci. Eng. 2020, 864, 012040. [Google Scholar] [CrossRef]
- Tiong, H.Y.; Lim, S.K.; Lee, Y.L.; Ong, C.F.; Yew, M.K. Environmental impact and quality assessment of using eggshell powder incorporated in lightweight foamed concrete. Constr. Build. Mater. 2020, 244, 118341. [Google Scholar] [CrossRef]
- Bai, C.; Colombo, P. High-porosity geopolymer membrane supports by peroxide route with the addition of egg white as surfactant. Ceram. Int. 2017, 43, 2267–2273. [Google Scholar] [CrossRef]
- Le-ping, L.; Xue-min, C.; Shu-heng, Q.; Jun-li, Y.; Lin, Z. Preparation of phosphoric acid-based porous geopolymers. Appl. Clay Sci. 2010, 50, 600–603. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Yang, Z.; Mocadlo, R.; Zhao, M.; Sisson, R.D.; Tao, M.; Liang, J. Preparation of a geopolymer from red mud slurry and class F fly ash and its behavior at elevated temperatures. Constr. Build. Mater. 2019, 221, 308–317. [Google Scholar] [CrossRef]
- Luo, Y.; Klima, K.M.; Brouwers, H.J.H.; Yu, Q. Effects of ladle slag on Class F fly ash geopolymer: Reaction mechanism and high temperature behavior. Cem. Concr. Compos. 2022, 129, 104468. [Google Scholar] [CrossRef]
- Murri, A.N.; Rickard, W.D.A.; Bignozzi, M.C.; van Riessen, A. High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cem. Concr. Res. 2013, 43, 51–61. [Google Scholar] [CrossRef]
- Koyama, K.; Koyama, K.; Goto, K. Cardiovascular effects of a herbicide containing glufosinate and a surfactant: In vitroandin vivo analyses in rats. Toxicol. Appl. Pharmacol. 1997, 145, 409–414. [Google Scholar] [CrossRef]
- Bakharev, T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cem. Concr. Res. 2005, 35, 1224–1232. [Google Scholar] [CrossRef]
- Hui-Teng, N.; Cheng-Yong, H.; Yun-Ming, L.; Abdullah, M.M.A.B.; Ern Hun, K.; Razi, H.M.; Yong-Sing, N. Formulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement. J. Mater. Res. Technol. 2021, 12, 1212–1226. [Google Scholar] [CrossRef]
- Jaya, N.A.; Yun-Ming, L.; Cheng-Yong, H.; Abdullah, M.M.A.B.; Hussin, K. Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Constr. Build. Mater. 2020, 247, 118641. [Google Scholar] [CrossRef]
- Pan, Z.; Sanjayan, J.G.; Collins, F. Effect of transient creep on compressive strength of geopolymer concrete for elevated temperature exposure. Cem. Concr. Res. 2013, 56, 182–189. [Google Scholar] [CrossRef]
- Cheng-Yong, H.; Yun-Ming, L.; Abdullah, M.M.A.B.; Kamarudin, H. Thermal resistance variations of fly ash geopolymers: Foaming responses. Sci. Rep. 2017, 7, 45355. [Google Scholar] [CrossRef]
- Panesar, D.K. Cellular concrete properties and the effect of synthetic and protein foaming agents. Constr. Build. Mater. 2013, 44, 575–584. [Google Scholar] [CrossRef]
- Škvára, F.; Jílek, T.; Kopecký, L. Geopolymer materials based on fly ash. Ceram. Silik. 2005, 49, 195–204. [Google Scholar]
- Dombrowski, K.; Buchwald, A.; Weil, M. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci. 2007, 42, 3033–3043. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Effects of slag content on the residual mechanical properties of ambient air-cured geopolymers exposed to elevated temperatures. J. Asian Ceram. Soc. 2018, 6, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhu, W.; Yang, E.H. Alkali-activated ground granulated blast-furnace slag incorporating incinerator fly ash as a potential binder. Constr. Build. Mater. 2016, 112, 1005–1012. [Google Scholar] [CrossRef]
- Peyne, J.; Gautron, J.; Doudeau, J.; Joussein, E.; Rossignol, S. Influence of calcium addition on calcined brick clay based geopolymers: A thermal and FTIR spectroscopy study. Constr. Build. Mater. 2017, 152, 794–803. [Google Scholar] [CrossRef]
- Guetteche, M.; Abdesselam, Z.; Hannachi, S. Investigating the local granulated blast furnace slag. Open J. Civ. Eng. 2012, 2, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Aissa, B.; Long-yuan, L.; Abdullah, M.M.A.B.; Quoc-Bao, B. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr. Build. Mater. 2019, 210, 198–209. [Google Scholar]
- Prusty, J.K.; Pradhan, B. Multi-response optimization using Taguchi-Grey relational analysis for composition of fly ash-ground granulated blast furnace slag based geopolymer concrete. Constr. Build. Mater. 2020, 241, 118049. [Google Scholar] [CrossRef]
- Pereira, A.P.; Silva, M.H.; Lima, É.P.; Paula, A.D.; Tommasini, F.J. Processing and characterization of PET composites reinforced with geopolymer concrete waste. Mater. Res. 2017, 20, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Ishwarya, G.; Singh, B.; Deshwal, S.; Bhattacharyya, S.K. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes. Cem. Concr. Compos. 2019, 97, 226–238. [Google Scholar]
- Khater, H.M. Effect of silica fume on the characterization of the geopolymer materials. Int. J. Adv. Struct. Eng. 2013, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Criado, M.; Aperador, W.; Sobrados, I. Microstructural and mechanical properties of alkali activated colombian raw materials. Materials 2016, 9, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahoti, M.; Wong, K.K.; Tan, K.H.; Yang, E.H. Effect of alkali cation type on strength endurance of fly ash geopolymers subject to high temperature exposure. Mater. Des. 2018, 154, 8–19. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Pastor, J.Y.; Martín, A. New cementitious materials based on alkali-activated fly ash: Performance at high temperatures. J. Am. Ceram. Soc. 2008, 91, 3308–3314. [Google Scholar] [CrossRef] [Green Version]
- Bernal, S.A.; Rodríguez, E.D.; Mejía, R.d.G.; Provis, J.L. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Mater. Constr. 2015, 65, e049. [Google Scholar] [CrossRef]
Compound | Fly Ash (wt.%) | Slag (wt.%) |
---|---|---|
SiO2 | 56.30 ± 0.15 | 21.30 ± 0.10 |
Al2O3 | 28.00 ± 0.30 | 2.30 ± 0.20 |
CaO | 3.89 ± 0.16 | 63.59 ± 0.13 |
Fe2O3 | 6.86 ± 0.05 | 8.08 ± 0.12 |
K2O | 1.49 ± 0.04 | - |
MgO | - | 2.60 ± 0.20 |
TiO2 | 2.17 ± 0.04 | 0.50 ± 0.16 |
PdO | - | - |
SO3 | - | - |
Others | 1.29 ± 0.16 | 1.63 ± 0.09 |
Category | Unfoamed Geopolymer | Foamed Geopolymer | |
---|---|---|---|
Abbreviation | G-0 | G-1 | G-2 |
PAS Foam:Paste Ratio | 0:0 | 1:1 | 2:1 |
Fly ash:Slag Ratio | 80:20 | ||
Sodium Hydroxide Concentration (M) | 8 | ||
Solid:Liquid Ratio | 3:1 | ||
Sodium Silicate:Sodium Hydroxide Ratio | 1.5:1 | ||
PAS:Water Ratio | 1:10 | ||
Exposure Temperature (°C) | 29, 200, 400, 600, 800 and 1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui-Teng, N.; Cheng-Yong, H.; Yun-Ming, L.; Abdullah, M.M.A.B.; Rojviriya, C.; Razi, H.M.; Garus, S.; Nabiałek, M.; Sochacki, W.; Abidin, I.M.Z.; et al. Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation. Materials 2022, 15, 4085. https://doi.org/10.3390/ma15124085
Hui-Teng N, Cheng-Yong H, Yun-Ming L, Abdullah MMAB, Rojviriya C, Razi HM, Garus S, Nabiałek M, Sochacki W, Abidin IMZ, et al. Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation. Materials. 2022; 15(12):4085. https://doi.org/10.3390/ma15124085
Chicago/Turabian StyleHui-Teng, Ng, Heah Cheng-Yong, Liew Yun-Ming, Mohd Mustafa Al Bakri Abdullah, Catleya Rojviriya, Hasniyati Md Razi, Sebastian Garus, Marcin Nabiałek, Wojciech Sochacki, Ilham Mukriz Zainal Abidin, and et al. 2022. "Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation" Materials 15, no. 12: 4085. https://doi.org/10.3390/ma15124085
APA StyleHui-Teng, N., Cheng-Yong, H., Yun-Ming, L., Abdullah, M. M. A. B., Rojviriya, C., Razi, H. M., Garus, S., Nabiałek, M., Sochacki, W., Abidin, I. M. Z., Yong-Sing, N., Śliwa, A., & Sandu, A. V. (2022). Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation. Materials, 15(12), 4085. https://doi.org/10.3390/ma15124085