Characteristics of Doped TiO2 Nanoparticle Photocatalysts Prepared by the Rotten Egg White
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of TiO2 Nanoparticles Using Egg White Protein
2.3. Doping of NaF and NaI in TiO2 Powder
2.4. Photocatalytic Degradation of Methylene Blue on Photoirradiation of TiO2 Powder
2.5. Characterization
2.5.1. Analysis of Crystallization, Particle Size, Appearance, and Surface Dispersion of the Synthesized Catalyst by Scanning Electron Microscopy (SEM)
2.5.2. Estimation of Morphology of Synthesized Material by HR-TEM-EDX
2.5.3. Estimation of Elemental Quantification of Synthesized Material by XPS
2.5.4. Estimation of Synthesized Material Absorption by UV-VIS-NIR
2.5.5. Photocatalytic Activity Measurements
3. Results and Discussion
3.1. Morphologic Analysis of Material by SEM
3.1.1. Effects of 400 °C and 500 °C Calcination
3.1.2. Analysis of TiO2 and F-Doped TiO2 by SEM
3.2. Material Morphology and Elemental Signature
3.2.1. F-Doped TiO2
3.2.2. I-Doped TiO2
3.3. Electronic Interaction of Synthesized Material
3.4. Energy Charge Transfer and Optical Properties of the F-Doped TiO2 Synthesized Material
3.5. Photocatalytic Degradation of Methylene Blue (MB)
- (a)
- In the first stage, the dark room test (Figure 7a), the catalyst particles of F-doped TiO2 and I-doped TiO2 (I-doped TiO2 more strongly) absorbed the blue color of MB; the value of C/Co dropped from 1 to 0.75, and the bottom of the centrifuge tubes was obviously dark blue, which was speculated to represent physical adsorption. Please refer to the image included (Figure 8); as can be seen, a dark blue solid residue was present at the bottom of the centrifuge tubes. It was thought that the residual TiO2 powder absorbed MB.
- (b)
- In the second stage with simulated sunlight, after the reaction in the dark room was completed, various TiO2 samples were then irradiated with simulated sunlight. From the data shown in the figure (Figure 7b), it was apparent that the degradation rate of F-doped TiO2 was the fastest of all the samples, at up to 73%, followed by I-doped TiO2, and the degradation rate of TiO2 was the lowest at 44%. As simulated sunlight also contains a small part of UV light, TiO2 will also degrade in the MB aqueous solution test. The comparative removal percentage (%) of methylene blue dye has been shown in Table 1.
4. Reaction Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bono, N.; Ponti, F.; Punta, C.; Candiani, G. Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: An overview. Materials 2021, 14, 1075. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, R.; Musial, J.; Bakun, P.; Spychała, M.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Koczorowski, T.; Sobotta, L.; Stanisz, B.; Goslinski, T. Titanium Dioxide-Based Photocatalysts for Degradation of Emerging Contaminants including Pharmaceutical Pollutants. Appl. Sci. 2021, 11, 8674. [Google Scholar] [CrossRef]
- Jeon, J.P.; Kweon, D.H.; Jang, B.J.; Ju, M.J.; Baek, J.B. Enhancing the photocatalytic activity of TiO2 catalysts. Adv. Sustain. Syst. 2020, 4, 2000197. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Wang, R.; Billone, P.S.; Mullett, W.M. Nanomedicine in action: An overview of cancer nanomedicine on the market and in clinical trials. J. Nanomater. 2013, 2013, 1. [Google Scholar] [CrossRef] [Green Version]
- Akpan, U.; Hameed, B. The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal. A Gen. 2010, 375, 1–11. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, C.; Ma, Z.; Ren, Z.; Fan, H.; Yang, X. Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 2016, 45, 3701–3730. [Google Scholar] [CrossRef] [Green Version]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908–4911. [Google Scholar] [CrossRef]
- Miao, L.; Tanemura, S.; Watanabe, H.; Mori, Y.; Kaneko, K.; Toh, S. The improvement of optical reactivity for TiO2 thin films by N2–H2 plasma surface-treatment. J. Cryst. Growth 2004, 260, 118–124. [Google Scholar] [CrossRef]
- Luo, H.; Takata, T.; Lee, Y.; Zhao, J.; Domen, K.; Yan, Y. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem. Mater. 2004, 16, 846–849. [Google Scholar] [CrossRef]
- Kadam, A.N.; Salunkhe, T.T.; Kim, H.; Lee, S.-W. Biogenic synthesis of mesoporous N–S–C tri-doped TiO2 photocatalyst via ultrasonic-assisted derivatization of biotemplate from expired egg white protein. Appl. Surf. Sci. 2020, 518, 146194. [Google Scholar] [CrossRef]
- Niederberger, M.; Pinna, N. Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Feinle, A.; Elsaesser, M.S.; Huesing, N. Sol–gel synthesis of monolithic materials with hierarchical porosity. Chem. Soc. Rev. 2016, 45, 3377–3399. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Xu, Y.; Chan, Y. Semiconductor nanocrystals in sol–gel derived matrices. Phys. Chem. Chem. Phys. 2013, 15, 13694–13704. [Google Scholar] [CrossRef]
- Haruta, M. Nanoparticulate Gold Catalysts for Low—Temperature CO Oxidation. ChemInform 2004, 35. [Google Scholar] [CrossRef]
- Bayan, E.; Lupeiko, T.; Pustovaya, L.; Volkova, M. Synthesis and photocatalytic properties of Sn–TiO2 nanomaterials. J. Adv. Dielectr. 2020, 10, 2060018. [Google Scholar] [CrossRef]
- Purwaningsih, H.; Ervianto, Y.; Pratiwi, V.M.; Susanti, D.; Purniawan, A. Effect of cetyl trimethyl ammonium bromide as template of mesoporous silica mcm-41 from rice husk by sol-gel method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 515, 012051. [Google Scholar] [CrossRef]
- Wang, D.; Wu, X.; Gao, Q. Novel energy-saving window coating based on F doped TiO2 nanocrystals with enhanced NIR shielding performance. Ceram. Int. 2021, 47, 28557–28565. [Google Scholar] [CrossRef]
- Bindhu, M.; Willington, T.D.; Hatshan, M.R.; Chen, S.-M.; Chen, T.-W. Environmental photochemistry with Sn/F simultaneously doped TiO2 nanoparticles: UV and visible light induced degradation of thiazine dye. Environ. Res. 2022, 207, 112108. [Google Scholar] [CrossRef]
- Luis, A.; Neves, M.; Mendonça, M.; Monteiro, O. Influence of calcination parameters on the TiO2 photocatalytic properties. Mater. Chem. Phys. 2011, 125, 20–25. [Google Scholar] [CrossRef]
- Bayan, E.; Lupeiko, T.; Pustovaya, L.; Volkova, M.; Butova, V.; Guda, A. Zn–F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. J. Alloy. Compd. 2020, 822, 153662. [Google Scholar] [CrossRef]
- Sharma, R.K.; Wang, S.-C.; Maity, J.P.; Banerjee, P.; Dey, G.; Huang, Y.-H.; Bundschuh, J.; Hsiao, P.-G.; Chen, T.-H.; Chen, C.-Y. A novel BMSN (biologically synthesized mesoporous silica nanoparticles) material: Synthesis using a bacteria-mediated biosurfactant and characterization. RSC Adv. 2021, 11, 32906–32916. [Google Scholar] [CrossRef] [PubMed]
- Maity, J.P.; Hsu, C.-M.; Lin, T.-J.; Lee, W.-C.; Bhattacharya, P.; Bundschuh, J.; Chen, C.-Y. Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: Adsorption isotherm, adsorption kinetic and adsorption thermodynamics. Environ. Nanotechnol. Monit. Manag. 2018, 9, 18–28. [Google Scholar] [CrossRef]
- Xia, S.-M.; Zhang, Y.-Q.; Zheng, Y.-F.; Xu, C.-S.; Liu, G.-M. Enhanced visible light photocatalytic activity of N, F-codoped TiO2 powders with high thermal stability. Environ. Technol. 2019, 40, 1418–1424. [Google Scholar] [CrossRef]
- Gao, Q.; Si, F.; Zhang, S.; Fang, Y.; Chen, X.; Yang, S. Hydrogenated F-doped TiO2 for photocatalytic hydrogen evolution and pollutant degradation. Int. J. Hydrog. Energy 2019, 44, 8011–8019. [Google Scholar] [CrossRef]
- Burda, C.; Lou, Y.; Chen, X.; Samia, A.C.; Stout, J.; Gole, J.L. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 2003, 3, 1049–1051. [Google Scholar] [CrossRef]
- Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ. 2003, 42, 403–409. [Google Scholar] [CrossRef]
- Kosowska, B.; Mozia, S.; Morawski, A.W.; Grzmil, B.; Janus, M.; Kałucki, K. The preparation of TiO2–nitrogen doped by calcination of TiO2· xH2O under ammonia atmosphere for visible light photocatalysis. Sol. Energy Mater. Sol. Cells 2005, 88, 269–280. [Google Scholar] [CrossRef]
- Yin, S.; Ihara, K.; Komatsu, M.; Zhang, Q.; Saito, F.; Kyotani, T.; Sato, T. Low temperature synthesis of TiO2− xNy powders and films with visible light responsive photocatalytic activity. Solid State Commun. 2006, 137, 132–137. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, C.; Zhao, D.; Ma, W.; Zhao, J. Change of adsorption modes of dyes on fluorinated TiO2 and its effect on photocatalytic degradation of dyes under visible irradiation. Langmuir 2008, 24, 7338–7345. [Google Scholar] [CrossRef]
- Song, H.; Xu, L.; Chen, M.; Cui, Y.; Wu, C.-E.; Qiu, J.; Xu, L.; Cheng, G.; Hu, X. Recent progresses in the synthesis of MnO2 nanowire and its application in environmental catalysis. RSC Adv. 2021, 11, 35494–35513. [Google Scholar] [CrossRef] [PubMed]
- Michalow, K.A.; Logvinovich, D.; Weidenkaff, A.; Amberg, M.; Fortunato, G.; Heel, A.; Graule, T.; Rekas, M. Synthesis, characterization and electronic structure of nitrogen-doped TiO2 nanopowder. Catal. Today 2009, 144, 7–12. [Google Scholar] [CrossRef]
- Wang, Q.; Rhimi, B.; Wang, H.; Wang, C. Efficient photocatalytic degradation of gaseous toluene over F-doped TiO2/exfoliated bentonite. Appl. Surf. Sci. 2020, 530, 147286. [Google Scholar] [CrossRef]
- Liu, D.; Tian, R.; Wang, J.; Nie, E.; Piao, X.; Li, X.; Sun, Z. Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation. Chemosphere 2017, 185, 574–581. [Google Scholar] [CrossRef]
Doped Nanoparticles | Contaminant Name | Light Source | Removal (%) | References |
---|---|---|---|---|
Pd–TiO2 | Methylene blue and methyl orange | Visible light; 120 min | Methylene blue (99.4%) and methyl orange (92.6%) | [1] |
V–TiO2 | Methylene blue | Visible light; 300 min | 15–30% | [2] |
Carbon-doped TiO2 | Methylene blue | Solar light | 62.95% | [3] |
Zirconium and silver co-doped TiO2 | Methylene blue | Visible light | 95% | [4] |
F-doped TiO2 | Methylene blue | Visible light | Discolored H+ (41.5%) and OH (46.5%) | [5] |
F-doped TiO2 prepared by expired egg white | Methylene blue | LED light | 73% | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.-M.; Sharma, R.K.; Lin, P.-Y.; Huang, Y.-H.; Chen, J.-S.; Lee, W.-C.; Chen, C.-Y. Characteristics of Doped TiO2 Nanoparticle Photocatalysts Prepared by the Rotten Egg White. Materials 2022, 15, 4231. https://doi.org/10.3390/ma15124231
Lu C-M, Sharma RK, Lin P-Y, Huang Y-H, Chen J-S, Lee W-C, Chen C-Y. Characteristics of Doped TiO2 Nanoparticle Photocatalysts Prepared by the Rotten Egg White. Materials. 2022; 15(12):4231. https://doi.org/10.3390/ma15124231
Chicago/Turabian StyleLu, Chung-Ming, Raju Kumar Sharma, Pin-Yun Lin, Yi-Hsun Huang, Jung-Sheng Chen, Wen-Chien Lee, and Chien-Yen Chen. 2022. "Characteristics of Doped TiO2 Nanoparticle Photocatalysts Prepared by the Rotten Egg White" Materials 15, no. 12: 4231. https://doi.org/10.3390/ma15124231
APA StyleLu, C. -M., Sharma, R. K., Lin, P. -Y., Huang, Y. -H., Chen, J. -S., Lee, W. -C., & Chen, C. -Y. (2022). Characteristics of Doped TiO2 Nanoparticle Photocatalysts Prepared by the Rotten Egg White. Materials, 15(12), 4231. https://doi.org/10.3390/ma15124231